Phillips Patrick C, Arnold Stevan J
Department of Biology, University of Texas at Arlington, Box 19498, Arlington, Texas, 76019-0498.
Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, 60637.
Evolution. 1999 Oct;53(5):1506-1515. doi: 10.1111/j.1558-5646.1999.tb05414.x.
The comparison of additive genetic variance-covariance matrices (G-matrices) is an increasingly popular exercise in evolutionary biology because the evolution of the G-matrix is central to the issue of persistence of genetic constraints and to the use of dynamic models in an evolutionary time frame. The comparison of G-matrices is a nontrivial statistical problem because family structure induces nonindependence among the elements in each matrix. Past solutions to the problem of G-matrix comparison have dealt with this problem, with varying success, but have tested a single null hypothesis (matrix equality or matrix dissimilarity). Because matrices can differ in many ways, several hypotheses are of interest in matrix comparisons. Flury (1988) has provided an approach to matrix comparison in which a variety of hypotheses are tested, including the two extreme hypotheses prevalent in the evolutionary literature. The hypotheses are arranged in a hierarchy and involve comparisons of both the principal components (eigenvectors) and eigenvalues of the matrix. We adapt Flury's hierarchy of tests to the problem of comparing G-matrices by using randomization testing to account for nonindependence induced by family structure. Software has been developed for carrying out this analysis for both genetic and phenotypic data. The method is illustrated with a garter snake test case.
加性遗传方差 - 协方差矩阵(G矩阵)的比较在进化生物学中是一项越来越流行的工作,因为G矩阵的进化对于遗传限制的持久性问题以及在进化时间框架内动态模型的使用至关重要。G矩阵的比较是一个复杂的统计问题,因为家族结构导致每个矩阵中的元素之间不独立。过去解决G矩阵比较问题的方法都处理了这个问题,取得了不同程度的成功,但都只检验了一个零假设(矩阵相等或矩阵不相似)。由于矩阵可能在许多方面存在差异,所以在矩阵比较中有几个假设值得关注。弗勒里(1988年)提供了一种矩阵比较方法,其中检验了多种假设,包括进化文献中普遍存在的两个极端假设。这些假设按层次排列,涉及矩阵主成分(特征向量)和特征值的比较。我们通过使用随机化检验来考虑家族结构引起的非独立性,将弗勒里的检验层次应用于比较G矩阵的问题。已经开发了软件来对遗传数据和表型数据进行这种分析。该方法通过一个束带蛇测试案例进行说明。