Wang Xingliang, Puinean Alin M, O Reilly Andrias O, Williamson Martin S, Smelt Charles L C, Millar Neil S, Wu Yidong
College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
Rothamsted Research, Biological Chemistry and Crop Protection Department, Harpenden, UK.
Insect Biochem Mol Biol. 2017 Jul;86:50-57. doi: 10.1016/j.ibmb.2017.05.006. Epub 2017 May 31.
Abamectin is one of the most widely used avermectins for agricultural pests control, but the emergence of resistance around the world is proving a major threat to its sustained application. Abamectin acts by directly activating glutamate-gated chloride channels (GluCls) and modulating other Cys-loop ion channels. To date, three mutations occurring in the transmembrane domain of arthropod GluCls are associated with target-site resistance to abamectin: A309V in Plutella xylostella GluCl (PxGluCl), G323D in Tetranychus urticae GluCl1 (TuGluCl1) and G326E in TuGluCl3. To compare the effects of these mutations in a single system, A309V/I/G and G315E (corresponding to G323 in TuGluCl1 and G326 in TuGluCl3) substitutions were introduced individually into the PxGluCl channel. Functional analysis using Xenopus oocytes showed that the A309V and G315E mutations reduced the sensitivity to abamectin by 4.8- and 493-fold, respectively. In contrast, the substitutions A309I/G show no significant effects on the response to abamectin. Interestingly, the A309I substitution increased the channel sensitivity to glutamate by one order of magnitude (∼12-fold). Analysis of PxGluCl homology models indicates that the G315E mutation interferes with abamectin binding through a steric hindrance mechanism. In contrast, the structural consequences of the A309 mutations are not so clear and an allosteric modification of the binding site is the most likely mechanism. Overall the results show that both A309V and G315E mutations may contribute to target-site resistance to abamectin and may be important for the future prediction and monitoring of abamectin resistance in P. xylostella and other arthropod pests.
阿维菌素是农业害虫防治中使用最广泛的阿维菌素之一,但全球范围内抗性的出现正证明了其持续应用面临的重大威胁。阿维菌素通过直接激活谷氨酸门控氯离子通道(GluCls)并调节其他半胱氨酸环离子通道发挥作用。迄今为止,节肢动物GluCls跨膜结构域中发生的三种突变与对阿维菌素的靶标位点抗性相关:小菜蛾GluCl(PxGluCl)中的A309V、二斑叶螨GluCl1(TuGluCl1)中的G323D和TuGluCl3中的G326E。为了在单一系统中比较这些突变的影响,将A309V/I/G和G315E(分别对应于TuGluCl1中的G323和TuGluCl3中的G326)替换分别引入PxGluCl通道。使用非洲爪蟾卵母细胞进行的功能分析表明,A309V和G315E突变分别使对阿维菌素的敏感性降低了4.8倍和493倍。相比之下,A309I/G替换对阿维菌素反应没有显著影响。有趣的是,A309I替换使通道对谷氨酸的敏感性提高了一个数量级(约12倍)。对PxGluCl同源模型的分析表明,G315E突变通过空间位阻机制干扰阿维菌素结合。相比之下,A309突变的结构后果不太明确,结合位点的变构修饰是最可能的机制。总体而言,结果表明A309V和G315E突变都可能导致对阿维菌素的靶标位点抗性,并且可能对未来小菜蛾和其他节肢动物害虫中阿维菌素抗性的预测和监测很重要。