Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Curr Biol. 2017 Jun 19;27(12):1791-1800.e5. doi: 10.1016/j.cub.2017.05.022. Epub 2017 Jun 1.
The mammalian pupillary light reflex (PLR) involves a bilateral brain circuit whereby afferent light signals in the optic nerve ultimately drive iris-sphincter-muscle contraction via excitatory cholinergic parasympathetic innervation [1, 2]. Additionally, the PLR in nocturnal and crepuscular sub-primate mammals has a "local" component in the isolated sphincter muscle [3-5], as in amphibians, fish, and bird [6-10]. In mouse, this local PLR requires the pigment melanopsin [5], originally found in intrinsically photosensitive retinal ganglion cells (ipRGCs) [11-19]. However, melanopsin's presence and effector pathway locally in the iris remain uncertain. The sphincter muscle itself may express melanopsin [5], or its cholinergic parasympathetic innervation may be modulated by suggested intraocular axonal collaterals of ipRGCs traveling to the eye's ciliary body or even to the iris [20-22]. Here, we show that the muscarinic receptor antagonist, atropine, eliminated the effect of acetylcholine (ACh), but not of light, on isolated mouse sphincter muscle. Conversely, selective genetic deletion of melanopsin in smooth muscle mostly removed the light-induced, but not the ACh-triggered, increase in isolated sphincter muscle's tension and largely suppressed the local PLR in vivo. Thus, sphincter muscle cells are bona fide, albeit unconventional, photoreceptors. We found melanopsin expression in a small subset of mouse iris sphincter muscle cells, with the light-induced contractile signal apparently spreading through gap junctions into neighboring muscle cells. Light and ACh share a common signaling pathway in sphincter muscle. In summary, our experiments have provided details of a photosignaling process in the eye occurring entirely outside the retina.
哺乳动物瞳孔对光反射(PLR)涉及双侧大脑回路,其中视神经中的传入光信号最终通过兴奋性胆碱能副交感神经支配驱动虹膜括约肌收缩[1,2]。此外,在夜间和黄昏的亚灵长类哺乳动物中,PLR 在孤立的括约肌中具有“局部”成分[3-5],就像在两栖动物、鱼类和鸟类中一样[6-10]。在小鼠中,这种局部 PLR 需要色素黑素视蛋白[5],最初在内在光敏视网膜神经节细胞(ipRGCs)中发现[11-19]。然而,黑素视蛋白在虹膜中的存在和效应途径仍然不确定。括约肌本身可能表达黑素视蛋白[5],或者其胆碱能副交感神经支配可能受到 ipRGCs 的眼内轴突侧支的调制,这些侧支可能到达眼睛的睫状体甚至虹膜[20-22]。在这里,我们表明毒蕈碱受体拮抗剂阿托品消除了乙酰胆碱(ACh)对分离的小鼠括约肌的作用,但不能消除光对其的作用。相反,选择性地在平滑肌中敲除黑素视蛋白,主要消除了光诱导的,但不是 ACh 触发的,分离的括约肌张力的增加,并在体内很大程度上抑制了局部 PLR。因此,括约肌细胞是真正的,尽管是非传统的,光感受器。我们发现黑素视蛋白在一小部分小鼠虹膜括约肌细胞中表达,光诱导的收缩信号显然通过缝隙连接扩散到相邻的肌肉细胞中。光和 ACh 在括约肌肌肉中共享一个共同的信号通路。总之,我们的实验提供了在眼睛中完全发生在视网膜之外的光信号过程的详细信息。