Brewer Thomas F, Burgos-Barragan Guillermo, Wit Niek, Patel Ketan J, Chang Christopher J
Department of Chemistry , University of California , Berkeley , California 94720 , USA . Email:
MRC Laboratory of Molecular Biology , University of Cambridge , Francis Crick Avenue , Cambridge CB2 0QH , UK.
Chem Sci. 2017 May 1;8(5):4073-4081. doi: 10.1039/c7sc00748e. Epub 2017 Apr 7.
Formaldehyde (FA) is a major reactive carbonyl species (RCS) that is naturally produced in living systems through a diverse array of cellular pathways that span from epigenetic regulation to the metabolic processing of endogenous metabolites. At the same time, however, aberrant elevations in FA levels contribute to pathologies ranging from cancer and diabetes to heart, liver, and neurodegenerative diseases. Disentangling the complex interplay between FA physiology and pathology motivates the development of chemical tools that can enable the selective detection of this RCS in biological environments with spatial and temporal fidelity. We report the design, synthesis, and biological evaluation of ratiometric formaldehyde probe (RFAP) indicators for the excitation-ratiometric fluorescence imaging of formaldehyde production in living systems. RFAP-1 and RFAP-2 utilize FA-dependent aza-Cope reactivity to convert an alkylamine-functionalized coumarin platform into its aldehyde congener with a 50 nm shift in the excitation wavelength. The probes exhibit visible excitation and emission profiles, and high selectivity for FA over a variety of RCS and related reactive biological analytes, including acetaldehyde, with up to a 6-fold change in the fluorescence ratio. The RFAP indicators can be used to monitor changes in FA levels in biological samples by live-cell imaging and/or flow cytometry. Moreover, RFAP-2 is capable of visualizing differences in the resting FA levels between wild-type cells and models with a gene knockout of ADH5, a major FA-metabolizing enzyme, establishing the utility of this ratiometric detection platform for identifying and probing sources of FA fluxes in biology.
甲醛(FA)是一种主要的活性羰基化合物(RCS),它在生物系统中通过一系列从表观遗传调控到内源性代谢物代谢加工的细胞途径自然产生。然而,与此同时,FA水平的异常升高会导致从癌症、糖尿病到心脏、肝脏和神经退行性疾病等各种病理状况。理清FA生理与病理之间复杂的相互作用,推动了能够在生物环境中以时空保真度选择性检测这种RCS的化学工具的开发。我们报告了用于活系统中甲醛生成激发比率荧光成像的比率型甲醛探针(RFAP)指示剂的设计、合成及生物学评估。RFAP-1和RFAP-2利用FA依赖性氮杂-Cope反应性,将烷基胺功能化的香豆素平台转化为其醛类似物,激发波长有50 nm的位移。这些探针呈现出可见的激发和发射光谱,对FA相对于多种RCS及相关活性生物分析物(包括乙醛)具有高选择性,荧光比率变化高达6倍。RFAP指示剂可通过活细胞成像和/或流式细胞术用于监测生物样品中FA水平的变化。此外,RFAP-2能够可视化野生型细胞与主要FA代谢酶ADH5基因敲除模型之间静息FA水平的差异,确立了这种比率型检测平台在识别和探究生物学中FA通量来源方面的实用性。