Suppr超能文献

利用机器学习准确预测自由电子激光的 X 射线脉冲特性。

Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning.

机构信息

Department of Physics, Imperial College London, London, SW7 2AZ, UK.

Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.

出版信息

Nat Commun. 2017 Jun 5;8:15461. doi: 10.1038/ncomms15461.

Abstract

Free-electron lasers providing ultra-short high-brightness pulses of X-ray radiation have great potential for a wide impact on science, and are a critical element for unravelling the structural dynamics of matter. To fully harness this potential, we must accurately know the X-ray properties: intensity, spectrum and temporal profile. Owing to the inherent fluctuations in free-electron lasers, this mandates a full characterization of the properties for each and every pulse. While diagnostics of these properties exist, they are often invasive and many cannot operate at a high-repetition rate. Here, we present a technique for circumventing this limitation. Employing a machine learning strategy, we can accurately predict X-ray properties for every shot using only parameters that are easily recorded at high-repetition rate, by training a model on a small set of fully diagnosed pulses. This opens the door to fully realizing the promise of next-generation high-repetition rate X-ray lasers.

摘要

自由电子激光提供超短高亮度的 X 射线脉冲,在科学领域具有广泛的应用潜力,是揭示物质结构动力学的关键要素。为了充分发挥这一潜力,我们必须准确了解 X 射线的特性:强度、光谱和时间分布。由于自由电子激光固有的波动,这需要对每一个脉冲的特性进行全面的描述。虽然存在这些特性的诊断方法,但它们通常具有侵入性,并且许多方法无法在高重复率下运行。在这里,我们提出了一种规避这一限制的技术。通过机器学习策略,我们可以仅使用在高重复率下很容易记录的参数,通过对一小部分完全诊断的脉冲进行训练,来准确预测每一次 X 射线发射的特性。这为充分实现下一代高重复率 X 射线激光的潜力打开了大门。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd91/5465316/a523dd1afb3b/ncomms15461-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验