Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 7610001, Israel.
Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel.
Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):E5504-E5512. doi: 10.1073/pnas.1702429114. Epub 2017 Jun 6.
Halide perovskite (HaP) semiconductors are revolutionizing photovoltaic (PV) solar energy conversion by showing remarkable performance of solar cells made with HaPs, especially tetragonal methylammonium lead triiodide (MAPbI). In particular, the low voltage loss of these cells implies a remarkably low recombination rate of photogenerated carriers. It was suggested that low recombination can be due to the spatial separation of electrons and holes, a possibility if MAPbI is a semiconducting ferroelectric, which, however, requires clear experimental evidence. As a first step, we show that, in operando, MAPbI (unlike MAPbBr) is pyroelectric, which implies it can be ferroelectric. The next step, proving it is (not) ferroelectric, is challenging, because of the material's relatively high electrical conductance (a consequence of an optical band gap suitable for PV conversion) and low stability under high applied bias voltage. This excludes normal measurements of a ferroelectric hysteresis loop, to prove ferroelectricity's hallmark switchable polarization. By adopting an approach suitable for electrically leaky materials as MAPbI, we show here ferroelectric hysteresis from well-characterized single crystals at low temperature (still within the tetragonal phase, which is stable at room temperature). By chemical etching, we also can image the structural fingerprint for ferroelectricity, polar domains, periodically stacked along the polar axis of the crystal, which, as predicted by theory, scale with the overall crystal size. We also succeeded in detecting clear second harmonic generation, direct evidence for the material's noncentrosymmetry. We note that the material's ferroelectric nature, can, but need not be important in a PV cell at room temperature.
卤化物钙钛矿(HaP)半导体通过展示由 HaP 制成的太阳能电池的卓越性能,特别是四方型甲脒碘化铅(MAPbI),正在彻底改变光伏(PV)太阳能转换。特别是,这些电池的低电压损耗意味着光生载流子的复合率非常低。有人认为,低复合率可能是由于电子和空穴的空间分离,如果 MAPbI 是半导体铁电体,则存在这种可能性,但是需要明确的实验证据。作为第一步,我们表明,在操作过程中,MAPbI(与 MAPbBr 不同)是热释电体,这意味着它可以是铁电体。下一步,要证明它是(不是)铁电体,这是具有挑战性的,因为该材料具有相对较高的电导率(这是适合 PV 转换的光学带隙的结果),并且在高外加偏压下稳定性较低。这排除了正常测量铁电体滞后环的可能性,以证明铁电性的标志性可切换极化。通过采用适用于 MAPbI 等漏电材料的方法,我们在低温下(仍在四方相内,该相在室温下稳定)从经过良好表征的单晶中显示出铁电体滞后。通过化学刻蚀,我们还可以对铁电性的结构指纹进行成像,即沿晶体的极轴周期性堆叠的极性畴,根据理论预测,该畴与整个晶体尺寸成比例。我们还成功地检测到了清晰的二次谐波产生,这是该材料非中心对称的直接证据。我们注意到,该材料的铁电性质在室温下的 PV 电池中可能很重要,但并非必需。