School of Chemical Engineering, Sichuan University , Chengdu 610065, PR China.
Department of Energy and Materials Engineering, Dongguk University-Seoul , Seoul 04620, Republic of Korea.
ACS Appl Mater Interfaces. 2017 Jun 28;9(25):21267-21275. doi: 10.1021/acsami.7b04338. Epub 2017 Jun 16.
A synergistic approach for advanced cathode materials is proposed. Sodium manganese oxide with a layered-tunnel hybrid structure was designed, synthesized, and subsequently investigated. The layered-tunnel hybrid structure provides fast Na ion diffusivity and high structural stability thanks to the tunnel phase, enabling high rate capability and greatly improved cycling stability compared to that of the pure P2 layered phase while retaining the high specific capacity of the P2 layered phase. The hybrid structure provided a decent discharge capacity of 133.4 mAh g even at 8 C, which exceeds the reported best rate capability for Mn-based cathodes. It also displayed an impressive cycling stability, maintaining 83.3 mAh g after 700 cycles at 10 C. Theoretical calculation and the potentiostatic intermittent titration technique (PITT) demonstrated that this hybrid structure helps enhance Na ion diffusivity during charge and discharge, attaining, as a result, an unprecendented electrochemical performance.
提出了一种用于先进阴极材料的协同方法。设计、合成了具有层-隧道混合结构的钠锰氧化物,并对其进行了研究。由于隧道相的存在,层-隧道混合结构提供了快速的钠离子扩散率和高的结构稳定性,与纯 P2 层状相相比,具有高倍率性能和大大提高的循环稳定性,同时保持了 P2 层状相的高比容量。该混合结构提供了出色的放电容量,即使在 8C 下也达到了 133.4mAh g-1,超过了报道的最好的基于锰的阴极倍率性能。它还表现出令人印象深刻的循环稳定性,在 10C 下循环 700 次后仍保持 83.3mAh g-1。理论计算和恒电位间歇滴定技术(PITT)表明,这种混合结构有助于在充电和放电过程中提高钠离子的扩散率,从而实现了前所未有的电化学性能。