Suppr超能文献

猪肺炎支原体能量平衡的代谢模型表明,添加丙酮酸可提高生长速率。

Metabolic modeling of energy balances in Mycoplasma hyopneumoniae shows that pyruvate addition increases growth rate.

作者信息

Kamminga Tjerko, Slagman Simen-Jan, Bijlsma Jetta J E, Martins Dos Santos Vitor A P, Suarez-Diez Maria, Schaap Peter J

机构信息

Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Stippeneng 4, 6708, Wageningen, The Netherlands.

Bioprocess Technology and Support, MSD Animal Health, Boxmeer, The Netherlands.

出版信息

Biotechnol Bioeng. 2017 Oct;114(10):2339-2347. doi: 10.1002/bit.26347. Epub 2017 Jul 27.

Abstract

Mycoplasma hyopneumoniae is cultured on large-scale to produce antigen for inactivated whole-cell vaccines against respiratory disease in pigs. However, the fastidious nutrient requirements of this minimal bacterium and the low growth rate make it challenging to reach sufficient biomass yield for antigen production. In this study, we sequenced the genome of M. hyopneumoniae strain 11 and constructed a high quality constraint-based genome-scale metabolic model of 284 chemical reactions and 298 metabolites. We validated the model with time-series data of duplicate fermentation cultures to aim for an integrated model describing the dynamic profiles measured in fermentations. The model predicted that 84% of cellular energy in a standard M. hyopneumoniae cultivation was used for non-growth associated maintenance and only 16% of cellular energy was used for growth and growth associated maintenance. Following a cycle of model-driven experimentation in dedicated fermentation experiments, we were able to increase the fraction of cellular energy used for growth through pyruvate addition to the medium. This increase in turn led to an increase in growth rate and a 2.3 times increase in the total biomass concentration reached after 3-4 days of fermentation, enhancing the productivity of the overall process. The model presented provides a solid basis to understand and further improve M. hyopneumoniae fermentation processes. Biotechnol. Bioeng. 2017;114: 2339-2347. © 2017 Wiley Periodicals, Inc.

摘要

猪肺炎支原体被大规模培养以生产用于猪呼吸道疾病全细胞灭活疫苗的抗原。然而,这种最小细菌对营养的苛刻要求以及低生长速率使得达到足够的生物量产量以用于抗原生产具有挑战性。在本研究中,我们对猪肺炎支原体11株的基因组进行了测序,并构建了一个基于约束的高质量基因组规模代谢模型,该模型包含284个化学反应和298种代谢物。我们用重复发酵培养的时间序列数据验证了该模型,旨在建立一个描述发酵过程中测量的动态概况的综合模型。该模型预测,在标准的猪肺炎支原体培养中,84%的细胞能量用于与生长无关的维持,只有16%的细胞能量用于生长和与生长相关的维持。在专门的发酵实验中经过一轮模型驱动的实验后,我们能够通过向培养基中添加丙酮酸来提高用于生长的细胞能量比例。这一增加反过来又导致生长速率提高,并且在发酵3 - 4天后达到的总生物量浓度增加了2.3倍,提高了整个过程的生产力。所呈现的模型为理解和进一步改进猪肺炎支原体发酵过程提供了坚实的基础。《生物技术与生物工程》2017年;114: 2339 - 2347。© 2017威利期刊公司

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa08/6084303/07ad2b1f6718/BIT-114-2339-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验