Suppr超能文献

通过组套索进行稀疏脑电图/脑磁图源估计

Sparse EEG/MEG source estimation via a group lasso.

作者信息

Lim Michael, Ales Justin M, Cottereau Benoit R, Hastie Trevor, Norcia Anthony M

机构信息

Department of Statistics, Stanford University, Stanford, CA, United States of America.

School of Psychology & Neuroscience, University of St Andrews, Scotland, United Kingdom.

出版信息

PLoS One. 2017 Jun 12;12(6):e0176835. doi: 10.1371/journal.pone.0176835. eCollection 2017.

Abstract

Non-invasive recordings of human brain activity through electroencephalography (EEG) or magnetoencelphalography (MEG) are of value for both basic science and clinical applications in sensory, cognitive, and affective neuroscience. Here we introduce a new approach to estimating the intra-cranial sources of EEG/MEG activity measured from extra-cranial sensors. The approach is based on the group lasso, a sparse-prior inverse that has been adapted to take advantage of functionally-defined regions of interest for the definition of physiologically meaningful groups within a functionally-based common space. Detailed simulations using realistic source-geometries and data from a human Visual Evoked Potential experiment demonstrate that the group-lasso method has improved performance over traditional ℓ2 minimum-norm methods. In addition, we show that pooling source estimates across subjects over functionally defined regions of interest results in improvements in the accuracy of source estimates for both the group-lasso and minimum-norm approaches.

摘要

通过脑电图(EEG)或脑磁图(MEG)对人类大脑活动进行无创记录,对于感觉、认知和情感神经科学的基础科学研究和临床应用均具有重要价值。在此,我们介绍一种新方法,用于估计从颅外传感器测量的EEG/MEG活动的颅内来源。该方法基于组套索,这是一种稀疏先验逆方法,已被调整以利用功能定义的感兴趣区域,在基于功能的公共空间内定义生理上有意义的组。使用逼真的源几何结构进行的详细模拟以及来自人类视觉诱发电位实验的数据表明,组套索方法比传统的ℓ2最小范数方法具有更好的性能。此外,我们表明,在功能定义的感兴趣区域跨受试者汇总源估计值,可提高组套索方法和最小范数方法的源估计准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验