Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94305-5175.
Department of Signal Processing, Autonomic Complex Communication Networks, Signals and Systems Linnaeus Centre, Kungliga Tekniska Högskolan Royal Institute of Technology, 100 44 Stockholm, Sweden.
Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):6675-6684. doi: 10.1073/pnas.1705420114. Epub 2017 Jun 12.
Skeletal muscles harbor quiescent muscle-specific stem cells (MuSCs) capable of tissue regeneration throughout life. Muscle injury precipitates a complex inflammatory response in which a multiplicity of cell types, cytokines, and growth factors participate. Here we show that Prostaglandin E2 (PGE2) is an inflammatory cytokine that directly targets MuSCs via the EP4 receptor, leading to MuSC expansion. An acute treatment with PGE2 suffices to robustly augment muscle regeneration by either endogenous or transplanted MuSCs. Loss of PGE2 signaling by specific genetic ablation of the EP4 receptor in MuSCs impairs regeneration, leading to decreased muscle force. Inhibition of PGE2 production through nonsteroidal anti-inflammatory drug (NSAID) administration just after injury similarly hinders regeneration and compromises muscle strength. Mechanistically, the PGE2 EP4 interaction causes MuSC expansion by triggering a cAMP/phosphoCREB pathway that activates the proliferation-inducing transcription factor, Our findings reveal that loss of PGE2 signaling to MuSCs during recovery from injury impedes muscle repair and strength. Through such gain- or loss-of-function experiments, we found that PGE2 signaling acts as a rheostat for muscle stem-cell function. Decreased PGE2 signaling due to NSAIDs or increased PGE2 due to exogenous delivery dictates MuSC function, which determines the outcome of regeneration. The markedly enhanced and accelerated repair of damaged muscles following intramuscular delivery of PGE2 suggests a previously unrecognized indication for this therapeutic agent.
骨骼肌中存在静止的肌肉特异性干细胞(MuSCs),它们能够在整个生命周期中进行组织再生。肌肉损伤会引发复杂的炎症反应,其中多种细胞类型、细胞因子和生长因子参与其中。在这里,我们发现前列腺素 E2(PGE2)是一种炎症细胞因子,它通过 EP4 受体直接靶向 MuSCs,导致 MuSC 扩增。急性 PGE2 处理足以通过内源性或移植的 MuSCs 强烈增强肌肉再生。通过 MuSCs 中 EP4 受体的特异性基因缺失来消除 PGE2 信号会损害再生,导致肌肉力量下降。在损伤后立即通过非甾体抗炎药(NSAID)抑制 PGE2 的产生同样会阻碍再生并损害肌肉力量。在机制上,PGE2-EP4 相互作用通过触发 cAMP/磷酸 CREB 途径引起 MuSC 扩增,该途径激活增殖诱导转录因子,我们的发现表明,在损伤后恢复期间 MuSCs 中 PGE2 信号的丢失会阻碍肌肉修复和力量的恢复。通过这种功能获得或丧失实验,我们发现 PGE2 信号作为肌肉干细胞功能的变阻器。由于 NSAIDs 导致的 PGE2 信号减少或由于外源性递送导致的 PGE2 增加决定了 MuSC 的功能,从而决定了再生的结果。肌肉内递送 PGE2 后,受损肌肉的修复明显增强和加速,这表明该治疗剂存在以前未被认识到的适应症。