Suppr超能文献

B 细胞亲和力成熟的主要限制是什么,我们可以通过接种疫苗驱动多少亲和力成熟?突破免疫的玻璃天花板。

What Are the Primary Limitations in B-Cell Affinity Maturation, and How Much Affinity Maturation Can We Drive with Vaccination? Breaking through Immunity's Glass Ceiling.

机构信息

Department of Immunology, Duke University, Durham, North Carolina 27710.

Duke Human Vaccine Institute, Duke University, Durham, North Carolina 27710.

出版信息

Cold Spring Harb Perspect Biol. 2018 May 1;10(5):a029397. doi: 10.1101/cshperspect.a029397.

Abstract

A key goal of HIV-1 vaccine development is the induction of broadly neutralizing antibodies (bnAbs) targeted to the vulnerable regions of the HIV envelope. BnAbs develop over time in ∼50% of HIV-1-infected individuals. However, to date, no vaccines have induced bnAbs and few or none of these vaccine-elicited HIV-1 antibodies carry the high frequencies of V(D)J mutations characteristic of bnAbs. Do the high frequencies of mutations characteristic of naturally induced bnAbs represent a fundamental barrier to the induction of bnAbs by vaccines? Recent studies suggest that high frequencies of V(D)J mutations can be achieved by serial vaccination strategies. Rather, it appears that, in the absence of HIV-1 infection, physiologic immune tolerance controls, including a germinal center process termed affinity reversion, may limit vaccine-driven bnAb development by clonal elimination or selecting for mutations incompatible with bnAb activity.

摘要

HIV-1 疫苗开发的一个关键目标是诱导针对 HIV 包膜脆弱区域的广泛中和抗体(bnAbs)。在大约 50%的 HIV-1 感染者中,bnAbs 会随着时间的推移而发展。然而,迄今为止,没有疫苗能诱导 bnAbs,而且这些疫苗诱导的 HIV-1 抗体中很少或没有一种具有 bnAbs 所具有的高频 V(D)J 突变特征。bnAbs 的高频突变是否代表了疫苗诱导 bnAbs 的一个基本障碍?最近的研究表明,通过连续接种疫苗策略可以实现高频 V(D)J 突变。相反,在没有 HIV-1 感染的情况下,生理免疫耐受控制,包括称为亲和力逆转的生发中心过程,可能通过克隆消除或选择与 bnAb 活性不兼容的突变来限制疫苗驱动的 bnAb 发展。

相似文献

10
Strategies for a multi-stage neutralizing antibody-based HIV vaccine.基于多阶段中和抗体的 HIV 疫苗策略。
Curr Opin Immunol. 2018 Aug;53:143-151. doi: 10.1016/j.coi.2018.04.025. Epub 2018 May 16.

引用本文的文献

2
Strategies for HIV-1 vaccines that induce broadly neutralizing antibodies.诱导广泛中和抗体的 HIV-1 疫苗策略。
Nat Rev Immunol. 2023 Mar;23(3):142-158. doi: 10.1038/s41577-022-00753-w. Epub 2022 Aug 12.
4
Optimizing immunization protocols to elicit broadly neutralizing antibodies.优化免疫方案以诱导广泛中和抗体。
Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):20077-20087. doi: 10.1073/pnas.1919329117. Epub 2020 Aug 3.

本文引用的文献

6
Complex Antigens Drive Permissive Clonal Selection in Germinal Centers.复杂抗原驱动生发中心的许可性克隆选择。
Immunity. 2016 Mar 15;44(3):542-552. doi: 10.1016/j.immuni.2016.02.010. Epub 2016 Mar 3.
7
HIV-Host Interactions: Implications for Vaccine Design.HIV与宿主的相互作用:对疫苗设计的启示。
Cell Host Microbe. 2016 Mar 9;19(3):292-303. doi: 10.1016/j.chom.2016.02.002. Epub 2016 Feb 25.
9
Memory B cells.记忆 B 细胞。
Nat Rev Immunol. 2015 Mar;15(3):149-59. doi: 10.1038/nri3802. Epub 2015 Feb 13.
10
Polyreactivity and autoreactivity among HIV-1 antibodies.HIV-1 抗体的多反应性和自身反应性。
J Virol. 2015 Jan;89(1):784-98. doi: 10.1128/JVI.02378-14. Epub 2014 Oct 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验