Suppr超能文献

聚(4-苯乙烯磺酸钠)诱导的硫空位自修复策略用于单层 MoS 同质结光电二极管。

Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS homojunction photodiode.

机构信息

State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China.

Beijing Municipal Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, People's Republic of China.

出版信息

Nat Commun. 2017 Jun 22;8:15881. doi: 10.1038/ncomms15881.

Abstract

We establish a powerful poly(4-styrenesulfonate) (PSS)-treated strategy for sulfur vacancy healing in monolayer MoS to precisely and steadily tune its electronic state. The self-healing mechanism, in which the sulfur vacancies are healed spontaneously by the sulfur adatom clusters on the MoS surface through a PSS-induced hydrogenation process, is proposed and demonstrated systematically. The electron concentration of the self-healed MoS dramatically decreased by 643 times, leading to a work function enhancement of ∼150 meV. This strategy is employed to fabricate a high performance lateral monolayer MoS homojunction which presents a perfect rectifying behaviour, excellent photoresponsivity of ∼308 mA W and outstanding air-stability after two months. Unlike previous chemical doping, the lattice defect-induced local fields are eliminated during the process of the sulfur vacancy self-healing to largely improve the homojunction performance. Our findings demonstrate a promising and facile strategy in 2D material electronic state modulation for the development of next-generation electronics and optoelectronics.

摘要

我们建立了一种强大的聚(4-苯乙烯磺酸钠)(PSS)处理策略,用于单层 MoS 中硫空位的修复,以精确和稳定地调节其电子状态。提出并系统地证明了自修复机制,其中硫空位通过 PSS 诱导的氢化过程由 MoS 表面上的硫原子簇自动修复。自修复的 MoS 的电子浓度急剧降低了 643 倍,导致功函数增强了约 150 meV。该策略用于制造高性能横向单层 MoS 同质结,其呈现出完美的整流行为、约 308 mA W 的优异光响应和两个月后出色的空气稳定性。与先前的化学掺杂不同,在硫空位自修复过程中消除了晶格缺陷诱导的局部场,从而大大提高了同质结的性能。我们的研究结果表明,在二维材料电子状态调制方面,这是一种很有前途且简便的策略,可用于开发下一代电子学和光电子学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验