Department of Applied Physics, Columbia University , New York 10027, United States.
Nano-Science Center and Department of Chemistry, University of Copenhagen , 1017 Copenhagen Ø, Denmark.
Nano Lett. 2017 Jul 12;17(7):4436-4442. doi: 10.1021/acs.nanolett.7b01592. Epub 2017 Jun 28.
Quantum interference effects, whether constructive or destructive, are key to predicting and understanding the electrical conductance of single molecules. Here, through theory and experiment, we investigate a family of benzene-like molecules that exhibit both constructive and destructive interference effects arising due to more than one contact between the molecule and each electrode. In particular, we demonstrate that the π-system of meta-coupled benzene can exhibit constructive interference and its para-coupled analog can exhibit destructive interference, and vice versa, depending on the specific through-space interactions. As a peculiarity, this allows a meta-coupled benzene molecule to exhibit higher conductance than a para-coupled benzene. Our results provide design principles for molecular electronic components with high sensitivity to through-space interactions and demonstrate that increasing the number of contacts between the molecule and electrodes can both increase and decrease the conductance.
量子干涉效应,无论是建设性的还是破坏性的,都是预测和理解单分子电导率的关键。在这里,通过理论和实验,我们研究了一类苯样分子,它们由于分子与每个电极之间的多次接触而表现出建设性和破坏性干涉效应。特别地,我们证明了间位耦合苯的π 体系可以表现出建设性干涉,而其对位耦合类似物则可以表现出破坏性干涉,反之亦然,这取决于特定的贯穿空间相互作用。作为一个特点,这允许间位耦合苯分子表现出比对位耦合苯更高的电导率。我们的结果为对贯穿空间相互作用具有高灵敏度的分子电子元件提供了设计原则,并证明了增加分子与电极之间的接触数量既可以增加也可以减少电导率。