Suppr超能文献

不同的细胞周期蛋白-Cdk1复合物对CST亚基进行顺序磷酸化,从而协调端粒复制。

Sequential phosphorylation of CST subunits by different cyclin-Cdk1 complexes orchestrate telomere replication.

作者信息

Gopalakrishnan Veena, Tan Cherylin Ruiling, Li Shang

机构信息

a Program in Cancer and Stem Cell Biology , Duke-NUS Medical School , Singapore.

b Department of Biological Sciences , National University of Singapore , Singapore.

出版信息

Cell Cycle. 2017 Jul 3;16(13):1271-1287. doi: 10.1080/15384101.2017.1312235. Epub 2017 Jun 26.

Abstract

Telomeres are nucleoprotein structures that cap the ends of linear chromosomes. Telomere homeostasis is central to maintaining genomic integrity. In budding yeast, Cdk1 phosphorylates the telomere-specific binding protein, Cdc13, promoting the recruitment of telomerase to telomere and thereby telomere elongation. Cdc13 is also an integral part of the CST (Cdc13-Stn1-Ten1) complex that is essential for telomere capping and counteracting telomerase-dependent telomere elongation. Therefore, telomere length homeostasis is a balance between telomerase-extendable and CST-unextendable states. In our earlier work, we showed that Cdk1 also phosphorylates Stn1 which occurs sequentially following Cdc13 phosphorylation during cell cycle progression. This stabilizes the CST complex at the telomere and results in telomerase inhibition. Hence Cdk1-dependent phosphorylations of Stn1 acts like a molecular switch that drives Cdc13 to complex with Stn1-Ten1 rather than with telomerase. However, the underlying mechanism of how a single cyclin-dependent kinase phosphorylates Cdc13 and Stn1 in temporally distinct windows is largely unclear. Here, we show that S phase cyclins are necessary for telomere maintenance. The S phase and mitotic cyclins facilitate Cdc13 and Stn1 phosphorylation respectively, to exert opposing outcomes at the telomere. Thus, our results highlight a previously unappreciated role for cyclins in telomere replication.

摘要

端粒是覆盖线性染色体末端的核蛋白结构。端粒稳态对于维持基因组完整性至关重要。在芽殖酵母中,Cdk1磷酸化端粒特异性结合蛋白Cdc13,促进端粒酶募集到端粒,从而实现端粒延长。Cdc13也是CST(Cdc13-Stn1-Ten1)复合物的一个组成部分,该复合物对于端粒封端和对抗端粒酶依赖性端粒延长至关重要。因此,端粒长度稳态是端粒酶可延长状态和CST不可延长状态之间的平衡。在我们早期的工作中,我们表明Cdk1也会磷酸化Stn1,这在细胞周期进程中在Cdc13磷酸化之后依次发生。这使CST复合物在端粒处稳定,导致端粒酶抑制。因此,Cdk1依赖性的Stn1磷酸化就像一个分子开关,驱动Cdc13与Stn1-Ten1形成复合物,而不是与端粒酶形成复合物。然而,单一的细胞周期蛋白依赖性激酶如何在时间上不同的窗口中磷酸化Cdc13和Stn1的潜在机制在很大程度上尚不清楚。在这里,我们表明S期细胞周期蛋白对于端粒维持是必需的。S期和有丝分裂细胞周期蛋白分别促进Cdc13和Stn1磷酸化,从而在端粒处产生相反的结果。因此,我们的结果突出了细胞周期蛋白在端粒复制中一个以前未被认识到的作用。

相似文献

1
Sequential phosphorylation of CST subunits by different cyclin-Cdk1 complexes orchestrate telomere replication.
Cell Cycle. 2017 Jul 3;16(13):1271-1287. doi: 10.1080/15384101.2017.1312235. Epub 2017 Jun 26.
2
Cdk1 regulates the temporal recruitment of telomerase and Cdc13-Stn1-Ten1 complex for telomere replication.
Mol Cell Biol. 2014 Jan;34(1):57-70. doi: 10.1128/MCB.01235-13. Epub 2013 Oct 28.
3
Distinct roles for yeast Stn1 in telomere capping and telomerase inhibition.
EMBO J. 2008 Sep 3;27(17):2328-39. doi: 10.1038/emboj.2008.158.
5
The Hsp82 molecular chaperone promotes a switch between unextendable and extendable telomere states.
Nat Struct Mol Biol. 2009 Jul;16(7):711-6. doi: 10.1038/nsmb.1616. Epub 2009 Jun 14.
6
Cdc13 is predominant over Stn1 and Ten1 in preventing chromosome end fusions.
Elife. 2020 Aug 5;9:e53144. doi: 10.7554/eLife.53144.
9
Rapid Cdc13 turnover and telomere length homeostasis are controlled by Cdk1-mediated phosphorylation of Cdc13.
Nucleic Acids Res. 2009 Jun;37(11):3602-11. doi: 10.1093/nar/gkp235. Epub 2009 Apr 9.

引用本文的文献

1
Dimerization of Cdc13 is essential for dynamic DNA exchange on telomeric DNA.
J Biol Chem. 2025 Jul 17;301(8):110496. doi: 10.1016/j.jbc.2025.110496.
2
Dimerization of Cdc13 is essential for dynamic DNA exchange on telomeric DNA.
bioRxiv. 2025 Mar 26:2025.03.25.645294. doi: 10.1101/2025.03.25.645294.
3
Cdc13 exhibits dynamic DNA strand exchange in the presence of telomeric DNA.
Nucleic Acids Res. 2024 Jun 24;52(11):6317-6332. doi: 10.1093/nar/gkae265.
5
To Join or Not to Join: Decision Points Along the Pathway to Double-Strand Break Repair vs. Chromosome End Protection.
Front Cell Dev Biol. 2021 Jul 12;9:708763. doi: 10.3389/fcell.2021.708763. eCollection 2021.
6
When the Ends Justify the Means: Regulation of Telomere Addition at Double-Strand Breaks in Yeast.
Front Cell Dev Biol. 2021 Mar 18;9:655377. doi: 10.3389/fcell.2021.655377. eCollection 2021.
7
CST in maintaining genome stability: Beyond telomeres.
DNA Repair (Amst). 2021 Jun;102:103104. doi: 10.1016/j.dnarep.2021.103104. Epub 2021 Mar 22.
8
Role of folding kinetics of secondary structures in telomeric G-overhangs in the regulation of telomere maintenance in .
J Biol Chem. 2020 Jul 3;295(27):8958-8971. doi: 10.1074/jbc.RA120.012914. Epub 2020 May 8.
9
Ssu72 phosphatase is a conserved telomere replication terminator.
EMBO J. 2019 Apr 1;38(7). doi: 10.15252/embj.2018100476. Epub 2019 Feb 21.

本文引用的文献

1
Palbociclib in Hormone-Receptor-Positive Advanced Breast Cancer.
N Engl J Med. 2015 Jul 16;373(3):209-19. doi: 10.1056/NEJMoa1505270. Epub 2015 Jun 1.
2
Cancer. TERT promoter mutations and telomerase reactivation in urothelial cancer.
Science. 2015 Feb 27;347(6225):1006-10. doi: 10.1126/science.1260200. Epub 2015 Feb 5.
5
Cell biology of disease: Telomeropathies: an emerging spectrum disorder.
J Cell Biol. 2014 May 12;205(3):289-99. doi: 10.1083/jcb.201401012.
6
Biology of telomeres: lessons from budding yeast.
FEMS Microbiol Rev. 2014 Mar;38(2):144-71. doi: 10.1111/1574-6976.12054.
7
Multisite phosphorylation networks as signal processors for Cdk1.
Nat Struct Mol Biol. 2013 Dec;20(12):1415-24. doi: 10.1038/nsmb.2706. Epub 2013 Nov 3.
8
Cdk1 regulates the temporal recruitment of telomerase and Cdc13-Stn1-Ten1 complex for telomere replication.
Mol Cell Biol. 2014 Jan;34(1):57-70. doi: 10.1128/MCB.01235-13. Epub 2013 Oct 28.
9
Molecular basis of telomere syndrome caused by CTC1 mutations.
Genes Dev. 2013 Oct 1;27(19):2099-108. doi: 10.1101/gad.222893.113.
10
Phosphorylation network dynamics in the control of cell cycle transitions.
J Cell Sci. 2012 Oct 15;125(Pt 20):4703-11. doi: 10.1242/jcs.106351.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验