Departamento de Tecnología Electrónica, Universidad de Málaga, ETSI Telecomunicación, 29071 Málaga, Spain.
Sensors (Basel). 2017 Jun 27;17(7):1513. doi: 10.3390/s17071513.
Due to the boom of wireless handheld devices such as smartwatches and smartphones, wearable Fall Detection Systems (FDSs) have become a major focus of attention among the research community during the last years. The effectiveness of a wearable FDS must be contrasted against a wide variety of measurements obtained from inertial sensors during the occurrence of falls and Activities of Daily Living (ADLs). In this regard, the access to public databases constitutes the basis for an open and systematic assessment of fall detection techniques. This paper reviews and appraises twelve existing available data repositories containing measurements of ADLs and emulated falls envisaged for the evaluation of fall detection algorithms in wearable FDSs. The analysis of the found datasets is performed in a comprehensive way, taking into account the multiple factors involved in the definition of the testbeds deployed for the generation of the mobility samples. The study of the traces brings to light the lack of a common experimental benchmarking procedure and, consequently, the large heterogeneity of the datasets from a number of perspectives (length and number of samples, typology of the emulated falls and ADLs, characteristics of the test subjects, features and positions of the sensors, etc.). Concerning this, the statistical analysis of the samples reveals the impact of the sensor range on the reliability of the traces. In addition, the study evidences the importance of the selection of the ADLs and the need of categorizing the ADLs depending on the intensity of the movements in order to evaluate the capability of a certain detection algorithm to discriminate falls from ADLs.
由于智能手表和智能手机等无线手持设备的蓬勃发展,可穿戴跌倒检测系统(FDS)在过去几年中成为研究界关注的焦点。可穿戴 FDS 的有效性必须与在跌倒和日常生活活动(ADL)发生期间从惯性传感器获得的各种测量值进行对比。在这方面,访问公共数据库是对跌倒检测技术进行公开和系统评估的基础。本文回顾和评估了现有的十二个可用数据存储库,这些存储库包含用于评估可穿戴 FDS 中跌倒检测算法的 ADL 和模拟跌倒的测量值。通过综合考虑定义用于生成移动性样本的测试平台所涉及的多个因素,对发现的数据集进行了分析。对轨迹的研究揭示了缺乏通用的实验基准测试程序,因此从多个角度(样本的长度和数量、模拟跌倒和 ADL 的类型、测试对象的特征、传感器的特征和位置等)来看,数据集存在很大的异构性。关于这一点,对样本的统计分析揭示了传感器范围对轨迹可靠性的影响。此外,该研究还证明了选择 ADL 的重要性,以及根据运动强度对 ADL 进行分类的必要性,以便评估特定检测算法区分跌倒和 ADL 的能力。