Suppr超能文献

用于小儿肌阵挛性癫痫预测的关联维数和非线性相互依赖性变化分析——一项初步研究。

Analysis of variations of correlation dimension and nonlinear interdependence for the prediction of pediatric myoclonic seizures - A preliminary study.

作者信息

Kolarijani Mohamad Amin Sharifi, Amirsalari Susan, Haidari Mohsen Reza

机构信息

New Hearing Technologies Research Center, Baqiyatallah University of Medical Sciences, Molla Sadra Street, Vanak Square, Tehran, POB 14155-3, Iran; Department of Bioelectrics, Faculty of Biomedical Engineering, Amirkabir University of Technology, Hafez Avenue, Tehran, POB 15875-4413, Iran.

New Hearing Technologies Research Center, Baqiyatallah University of Medical Sciences, Molla Sadra Street, Vanak Square, Tehran, POB 14155-3, Iran; Department of Paediatrics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Molla Sadra Street, Vanak Square, Tehran, POB 14155-3, Iran; Shefa Neuroscience Research Center, Khatam al Anbia Specialty and Subspecialty Hospital, Rashid Yasemi Street, Tehran, Iran.

出版信息

Epilepsy Res. 2017 Sep;135:102-114. doi: 10.1016/j.eplepsyres.2017.06.011. Epub 2017 Jun 17.

Abstract

In this preliminary study, we evaluated the predictive ability of Correlation Dimension (CD) and Nonlinear Interdependence (NI) for seizures in pediatric myoclonic epilepsy patients. Scalp EEG recordings of eight diagnosed cases of myoclonic epilepsy were analyzed using Receiver Operating Curve (ROC) for discriminating the preictal period from interictal period. Furthermore, based on clinical seizure characteristics and EEG data, the spatiotemporal patterns of measures in clinically relevant areas of the brain were compared with other areas for each patient. CD showed a dominant increasing behavior in both all of the individual channels and channels of clinical interest for 75% of patients. For NI, the dominant direction was also increasing in 62.5% of patients for all of the individual channels and in 75% of patients for channels of clinical interest. However, there was no consistent general behavior in the timing of the preictal change amongst patients and within individual patient. Nonlinear measures of CD and NI can differentiate the preictal phase from the corresponding interictal phase. However, due to high variability, patient-wise tuning of possible automated systems for seizure prediction is suggested. This is the first study to employ nonlinear analysis for seizure prediction in pediatric myoclonic epilepsy.

摘要

在这项初步研究中,我们评估了关联维数(CD)和非线性相互依赖性(NI)对小儿肌阵挛性癫痫患者癫痫发作的预测能力。使用接受者操作特征曲线(ROC)对8例确诊的肌阵挛性癫痫病例的头皮脑电图记录进行分析,以区分发作前期和发作间期。此外,根据临床癫痫发作特征和脑电图数据,将每位患者大脑临床相关区域测量指标的时空模式与其他区域进行比较。对于75%的患者,CD在所有单个通道以及临床感兴趣的通道中均表现出显著的增加趋势。对于NI,在所有单个通道中,62.5%的患者其主导方向也呈增加趋势,而在临床感兴趣的通道中,75%的患者其主导方向呈增加趋势。然而,在患者之间以及个体患者内部,发作前变化的时间并没有一致的普遍规律。CD和NI的非线性测量方法可以区分发作前期和相应的发作间期。然而,由于变异性较高,建议针对癫痫发作预测的可能自动化系统进行患者个体化调整。这是第一项采用非线性分析对小儿肌阵挛性癫痫进行癫痫发作预测的研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验