Suppr超能文献

在上颈椎的有限元模型中加入韧带松弛度。

Incorporating ligament laxity in a finite element model for the upper cervical spine.

机构信息

Department of MME, University of Waterloo, 200 University Ave West, Waterloo, Ontario, Canada N2L 3G1.

Department of MME, University of Waterloo, 200 University Ave West, Waterloo, Ontario, Canada N2L 3G1.

出版信息

Spine J. 2017 Nov;17(11):1755-1764. doi: 10.1016/j.spinee.2017.06.040. Epub 2017 Jun 30.

Abstract

BACKGROUND CONTEXT

Predicting physiological range of motion (ROM) using a finite element (FE) model of the upper cervical spine requires the incorporation of ligament laxity. The effect of ligament laxity can be observed only on a macro level of joint motion and is lost once ligaments have been dissected and preconditioned for experimental testing. As a result, although ligament laxity values are recognized to exist, specific values are not directly available in the literature for use in FE models.

PURPOSE

The purpose of the current study is to propose an optimization process that can be used to determine a set of ligament laxity values for upper cervical spine FE models. Furthermore, an FE model that includes ligament laxity is applied, and the resulting ROM values are compared with experimental data for physiological ROM, as well as experimental data for the increase in ROM when a Type II odontoid fracture is introduced.

DESIGN/SETTING: The upper cervical spine FE model was adapted from a 50th percentile male full-body model developed with the Global Human Body Models Consortium (GHBMC). FE modeling was performed in LS-DYNA and LS-OPT (Livermore Software Technology Group) was used for ligament laxity optimization.

METHODS

Ordinate-based curve matching was used to minimize the mean squared error (MSE) between computed load-rotation curves and experimental load-rotation curves under flexion, extension, and axial rotation with pure moment loads from 0 to 3.5 Nm. Lateral bending was excluded from the optimization because the upper cervical spine was considered to be primarily responsible for flexion, extension, and axial rotation. Based on recommendations from the literature, four varying inputs representing laxity in select ligaments were optimized to minimize the MSE. Funding was provided by the Natural Sciences and Engineering Research Council of Canada as well as GHMBC. The present study was funded by the Natural Sciences and Engineering Research Council of Canada to support the work of one graduate student. There are no conflicts of interest to be reported.

RESULTS

The MSE was reduced to 0.28 in the FE model with optimized ligament laxity compared with an MSE 0f 4.16 in the FE model without laxity. In all load cases, incorporating ligament laxity improved the agreement between the ROM of the FE model and the ROM of the experimental data. The ROM for axial rotation and extension was within one standard deviation of the experimental data. The ROM for flexion and lateral bending was outside one standard deviation of the experimental data, but a compromise was required to use one set of ligament laxity values to achieve a best fit to all load cases. Atlanto-occipital motion was compared as a ratio to overall ROM, and only in extension did the inclusion of ligament laxity not improve the agreement. After a Type II odontoid fracture was incorporated into the model, the increase in ROM was consistent with experimental data from the literature.

CONCLUSIONS

The optimization approach used in this study provided values for ligament laxities that, when incorporated into the FE model, generally improved the ROM response when compared with experimental data. Successfully modeling a Type II odontoid fracture showcased the robustness of the FE model, which can now be used in future biomechanics studies.

摘要

背景

使用上颈椎的有限元(FE)模型预测生理运动范围(ROM)需要纳入韧带松弛。只有在关节运动的宏观水平上才能观察到韧带松弛的影响,并且一旦韧带被解剖并为实验测试做好准备,这种影响就会消失。因此,尽管韧带松弛值是公认存在的,但在文献中并没有直接提供特定值用于 FE 模型。

目的

本研究的目的是提出一种优化过程,可用于确定上颈椎 FE 模型的一组韧带松弛值。此外,应用包括韧带松弛的 FE 模型,并将得到的 ROM 值与生理 ROM 的实验数据以及引入 II 型齿状突骨折时 ROM 增加的实验数据进行比较。

设计/环境:上颈椎 FE 模型是从 50 百分位男性全身模型改编而来的,该模型是由全球人体模型联盟(GHBMC)开发的。FE 建模是在 LS-DYNA 中进行的,LS-OPT(利弗莫尔软件技术集团)用于韧带松弛优化。

方法

坐标匹配曲线用于最小化计算的载荷-旋转曲线和实验载荷-旋转曲线之间的均方误差(MSE),实验载荷-旋转曲线是在 0 到 3.5Nm 的纯力矩载荷下进行的,在屈伸和轴向旋转下。由于认为上颈椎主要负责屈伸和轴向旋转,因此排除了侧向弯曲。根据文献中的建议,优化了四个变化输入,以最小化 MSE,这些输入代表了特定韧带中的松弛。自然科学与工程研究理事会(NSERC)和 GHBMC 为这项研究提供了资金。本研究由自然科学与工程研究理事会(NSERC)资助,旨在支持一名研究生的工作。没有需要报告的利益冲突。

结果

与没有松弛的 FE 模型相比,具有优化韧带松弛的 FE 模型的 MSE 降低到 0.28。在所有载荷情况下,纳入韧带松弛都会提高 FE 模型的 ROM 与实验数据的一致性。轴向旋转和伸展的 ROM 在实验数据的一个标准差范围内。屈曲和侧向弯曲的 ROM 在实验数据的一个标准差之外,但为了使用一组韧带松弛值来实现对所有载荷情况的最佳拟合,需要做出妥协。寰枢关节运动被作为总 ROM 的比值进行比较,只有在伸展时,纳入韧带松弛并不能提高一致性。当将 II 型齿状突骨折纳入模型后,ROM 的增加与文献中的实验数据一致。

结论

本研究中使用的优化方法提供了韧带松弛值,当将其纳入 FE 模型时,通常会改善与实验数据的 ROM 反应。成功模拟 II 型齿状突骨折展示了 FE 模型的稳健性,现在可以用于未来的生物力学研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验