Suppr超能文献

DeepSleepNet:一种基于原始单通道 EEG 的自动睡眠阶段评分模型。

DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2017 Nov;25(11):1998-2008. doi: 10.1109/TNSRE.2017.2721116. Epub 2017 Jun 28.

Abstract

This paper proposes a deep learning model, named DeepSleepNet, for automatic sleep stage scoring based on raw single-channel EEG. Most of the existing methods rely on hand-engineered features, which require prior knowledge of sleep analysis. Only a few of them encode the temporal information, such as transition rules, which is important for identifying the next sleep stages, into the extracted features. In the proposed model, we utilize convolutional neural networks to extract time-invariant features, and bidirectional-long short-term memory to learn transition rules among sleep stages automatically from EEG epochs. We implement a two-step training algorithm to train our model efficiently. We evaluated our model using different single-channel EEGs (F4-EOG (left), Fpz-Cz, and Pz-Oz) from two public sleep data sets, that have different properties (e.g., sampling rate) and scoring standards (AASM and R&K). The results showed that our model achieved similar overall accuracy and macro F1-score (MASS: 86.2%-81.7, Sleep-EDF: 82.0%-76.9) compared with the state-of-the-art methods (MASS: 85.9%-80.5, Sleep-EDF: 78.9%-73.7) on both data sets. This demonstrated that, without changing the model architecture and the training algorithm, our model could automatically learn features for sleep stage scoring from different raw single-channel EEGs from different data sets without utilizing any hand-engineered features.

摘要

本文提出了一种基于原始单通道 EEG 的深度学习模型 DeepSleepNet,用于自动睡眠阶段评分。大多数现有的方法依赖于手工制作的特征,这些特征需要睡眠分析的先验知识。只有少数方法将时间信息(例如,重要的用于识别下一个睡眠阶段的转换规则)编码到提取的特征中。在提出的模型中,我们利用卷积神经网络提取时不变特征,并且双向长短时记忆自动从 EEG 时段中学习睡眠阶段之间的转换规则。我们实现了两步训练算法,以有效地训练我们的模型。我们使用来自两个公共睡眠数据集的不同单通道 EEG(F4-EOG(左)、Fpz-Cz 和 Pz-Oz)评估了我们的模型,这些数据集具有不同的特性(例如,采样率)和评分标准(AASM 和 R&K)。结果表明,与最先进的方法相比,我们的模型在两个数据集上的整体准确率和宏观 F1 得分(MASS:86.2%-81.7,Sleep-EDF:82.0%-76.9)相似(MASS:85.9%-80.5,Sleep-EDF:78.9%-73.7)。这表明,无需更改模型架构和训练算法,我们的模型可以自动从不同数据集的不同原始单通道 EEG 中学习用于睡眠阶段评分的特征,而无需利用任何手工制作的特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验