Suppr超能文献

基于SIFT的静脉识别模型:分析与改进

SIFT Based Vein Recognition Models: Analysis and Improvement.

作者信息

Wang Guoqing, Wang Jun

机构信息

School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221006, China.

出版信息

Comput Math Methods Med. 2017;2017:2373818. doi: 10.1155/2017/2373818. Epub 2017 Jun 7.

Abstract

Scale-Invariant Feature Transform (SIFT) is being investigated more and more to realize a less-constrained hand vein recognition system. Contrast enhancement (CE), compensating for deficient dynamic range aspects, is a must for SIFT based framework to improve the performance. However, evidence of negative influence on SIFT matching brought by CE is analysed by our experiments. We bring evidence that the number of extracted keypoints resulting by gradient based detectors increases greatly with different CE methods, while on the other hand the matching result of extracted invariant descriptors is negatively influenced in terms of Precision-Recall (PR) and Equal Error Rate (EER). Rigorous experiments with state-of-the-art and other CE adopted in published SIFT based hand vein recognition system demonstrate the influence. What is more, an improved SIFT model by importing the kernel of RootSIFT and Mirror Match Strategy into a unified framework is proposed to make use of the positive keypoints change and make up for the negative influence brought by CE.

摘要

为实现一个约束较少的手部静脉识别系统,尺度不变特征变换(SIFT)正受到越来越多的研究。对比度增强(CE)用于弥补动态范围方面的不足,对于基于SIFT的框架而言,这是提高性能的必要条件。然而,我们的实验分析了对比度增强对SIFT匹配产生负面影响的证据。我们发现,基于梯度的检测器所提取的关键点数量会因不同的对比度增强方法而大幅增加,而另一方面,所提取的不变描述符的匹配结果在精确率-召回率(PR)和等错误率(EER)方面受到负面影响。在已发表的基于SIFT的手部静脉识别系统中,采用最先进技术及其他对比度增强方法进行的严格实验证明了这种影响。此外,还提出了一种改进的SIFT模型,即将RootSIFT内核和镜像匹配策略引入一个统一框架,以利用正向关键点变化并弥补对比度增强带来的负面影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3634/5478887/9258cfee0c18/CMMM2017-2373818.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验