Suppr超能文献

评估研究生态系统。

Taking Stock of the Research Ecosystem.

作者信息

Bilder David, Irvine Kenneth D

机构信息

Department of Molecular and Cell Biology, University of California-Berkeley, California 94720

Waksman Institute, Rutgers University, Piscataway, New Jersey 08854

出版信息

Genetics. 2017 Jul;206(3):1227-1236. doi: 10.1534/genetics.117.202390.

Abstract

With a century-old history of fundamental discoveries, the fruit fly has long been a favored experimental organism for a wide range of scientific inquiries. But is not a "legacy" model organism; technical and intellectual innovations continue to revitalize fly research and drive advances in our understanding of conserved mechanisms of animal biology. Here, we provide an overview of this "ecosystem" and discuss how to address emerging challenges to ensure its continued productivity. researchers are fortunate to have a sophisticated and ever-growing toolkit for the analysis of gene function. Access to these tools depends upon continued support for both physical and informational resources. Uncertainty regarding stable support for bioinformatic databases is a particular concern, at a time when there is the need to make the vast knowledge of functional biology provided by this model animal accessible to scientists studying other organisms. Communication and advocacy efforts will promote appreciation of the value of the fly in delivering biomedically important insights. Well-tended traditions of large-scale tool development, open sharing of reagents, and community engagement provide a strong basis for coordinated and proactive initiatives to improve the fly research ecosystem. Overall, there has never been a better time to be a fly pusher.

摘要

果蝇有着长达一个世纪的基础发现历史,长期以来一直是广泛科学探究中备受青睐的实验生物。但它并非“传统”模式生物;技术和知识创新不断为果蝇研究注入活力,并推动我们在理解动物生物学保守机制方面取得进展。在此,我们概述这个“生态系统”,并讨论如何应对新出现的挑战以确保其持续产出。研究人员有幸拥有一套复杂且不断发展的基因功能分析工具包。获取这些工具依赖于对物理和信息资源的持续支持。在需要让研究其他生物的科学家能够获取这种模式动物所提供的大量功能生物学知识之际,对生物信息数据库稳定支持的不确定性尤其令人担忧。沟通和宣传工作将增进人们对果蝇在提供具有生物医学重要意义的见解方面价值的认识。大规模工具开发、试剂的开放共享以及社区参与等良好传统,为改善果蝇研究生态系统的协调且积极主动的举措提供了坚实基础。总体而言,现在是成为果蝇研究者的最佳时机。

相似文献

1
Taking Stock of the Research Ecosystem.
Genetics. 2017 Jul;206(3):1227-1236. doi: 10.1534/genetics.117.202390.
3
Genetics on the Fly: A Primer on the Drosophila Model System.
Genetics. 2015 Nov;201(3):815-42. doi: 10.1534/genetics.115.183392.
4
Genome, evolution, Drosophila and beyond: the new dimensions.
Fly (Austin). 2007 Sep-Oct;1(5):297-302. doi: 10.4161/fly.5244. Epub 2007 Sep 4.
5
The Manchester Fly Facility: Implementing an objective-driven long-term science communication initiative.
Semin Cell Dev Biol. 2017 Oct;70:38-48. doi: 10.1016/j.semcdb.2017.06.004. Epub 2017 Jun 15.
6
Drosophila Genetic Resource and Stock Center; The National BioResource Project.
Exp Anim. 2010;59(2):125-38. doi: 10.1538/expanim.59.125.
7
Current techniques for high-resolution mapping of behavioral circuits in Drosophila.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2015 Sep;201(9):895-909. doi: 10.1007/s00359-015-1010-y. Epub 2015 Apr 30.
8
Model organisms and molecular genetics for endocrinology.
Gen Comp Endocrinol. 2007 Aug-Sep;153(1-3):3-12. doi: 10.1016/j.ygcen.2007.01.023. Epub 2007 Jan 30.
9
Fruit fly research in China.
J Genet Genomics. 2018 Nov 20;45(11):583-592. doi: 10.1016/j.jgg.2018.09.003. Epub 2018 Nov 3.
10
One hundred years of high-throughput Drosophila research.
Chromosome Res. 2006;14(4):349-62. doi: 10.1007/s10577-006-1065-2.

引用本文的文献

1
Protocol: An absolute egg-to-adult viability assay in .
MicroPubl Biol. 2025 Aug 21;2025. doi: 10.17912/micropub.biology.001656. eCollection 2025.
2
3
Model organisms for investigating the functional involvement of NRF2 in non-communicable diseases.
Redox Biol. 2025 Feb;79:103464. doi: 10.1016/j.redox.2024.103464. Epub 2024 Dec 16.
4
Beyond the heat shock pathway: Heat stress responses in Drosophila development.
Dev Biol. 2025 Feb;518:53-60. doi: 10.1016/j.ydbio.2024.11.003. Epub 2024 Nov 16.
5
Next-generation large-scale binary protein interaction network for Drosophila melanogaster.
Nat Commun. 2023 Apr 15;14(1):2162. doi: 10.1038/s41467-023-37876-0.
9
Gender Identification and Classification of Flies Using Machine Learning Techniques.
Comput Math Methods Med. 2022 Jan 13;2022:4593330. doi: 10.1155/2022/4593330. eCollection 2022.
10
Tumour-host interactions through the lens of Drosophila.
Nat Rev Cancer. 2021 Nov;21(11):687-700. doi: 10.1038/s41568-021-00387-5. Epub 2021 Aug 13.

本文引用的文献

2
Modeling Human Cancers in Drosophila.
Curr Top Dev Biol. 2017;121:287-309. doi: 10.1016/bs.ctdb.2016.07.008. Epub 2016 Jul 30.
4
A Syndromic Neurodevelopmental Disorder Caused by De Novo Variants in EBF3.
Am J Hum Genet. 2017 Jan 5;100(1):128-137. doi: 10.1016/j.ajhg.2016.11.018. Epub 2016 Dec 22.
5
FlyRNAi.org-the database of the Drosophila RNAi screening center and transgenic RNAi project: 2017 update.
Nucleic Acids Res. 2017 Jan 4;45(D1):D672-D678. doi: 10.1093/nar/gkw977. Epub 2016 Oct 23.
6
FlyBase at 25: looking to the future.
Nucleic Acids Res. 2017 Jan 4;45(D1):D663-D671. doi: 10.1093/nar/gkw1016. Epub 2016 Oct 30.
7
Using FlyBase, a Database of Drosophila Genes and Genomes.
Methods Mol Biol. 2016;1478:1-31. doi: 10.1007/978-1-4939-6371-3_1.
8
Opinion: NIH must support broadly focused basic research.
Proc Natl Acad Sci U S A. 2016 Jul 26;113(30):8340-2. doi: 10.1073/pnas.1610102113.
9
Using Drosophila to discover mechanisms underlying type 2 diabetes.
Dis Model Mech. 2016 Apr;9(4):365-76. doi: 10.1242/dmm.023887.
10
Basic science: Bedrock of progress.
Science. 2016 Mar 25;351(6280):1405. doi: 10.1126/science.351.6280.1405-a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验