Pontes Bruno, Monzo Pascale, Gole Laurent, Le Roux Anabel-Lise, Kosmalska Anita Joanna, Tam Zhi Yang, Luo Weiwei, Kan Sophie, Viasnoff Virgile, Roca-Cusachs Pere, Tucker-Kellogg Lisa, Gauthier Nils C
Mechanobiology Institute, National University of Singapore, Singapore.
Laboratório de Pinças Óticas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
J Cell Biol. 2017 Sep 4;216(9):2959-2977. doi: 10.1083/jcb.201611117. Epub 2017 Jul 7.
Cell migration is dependent on adhesion dynamics and actin cytoskeleton remodeling at the leading edge. These events may be physically constrained by the plasma membrane. Here, we show that the mechanical signal produced by an increase in plasma membrane tension triggers the positioning of new rows of adhesions at the leading edge. During protrusion, as membrane tension increases, velocity slows, and the lamellipodium buckles upward in a myosin II-independent manner. The buckling occurs between the front of the lamellipodium, where nascent adhesions are positioned in rows, and the base of the lamellipodium, where a vinculin-dependent clutch couples actin to previously positioned adhesions. As membrane tension decreases, protrusion resumes and buckling disappears, until the next cycle. We propose that the mechanical signal of membrane tension exerts upstream control in mechanotransduction by periodically compressing and relaxing the lamellipodium, leading to the positioning of adhesions at the leading edge of cells.
细胞迁移依赖于黏附动力学以及前沿的肌动蛋白细胞骨架重塑。这些事件可能受到质膜的物理限制。在此,我们表明质膜张力增加所产生的机械信号会触发新一排黏附在前沿的定位。在细胞突出过程中,随着膜张力增加,速度减慢,片状伪足以不依赖肌球蛋白II的方式向上弯曲。这种弯曲发生在片状伪足前端(新生黏附在此排成行)与片状伪足基部(一种依赖纽蛋白的连接将肌动蛋白与先前定位的黏附相连)之间。随着膜张力降低,突出恢复且弯曲消失,直至下一个周期。我们提出膜张力的机械信号通过周期性地压缩和松弛片状伪足在机械转导中发挥上游控制作用,从而导致黏附在细胞前沿的定位。