Suppr超能文献

一种用于高通量颗粒分离的 3D 打印微型水力旋流器:在微藻初级收获中的应用。

A 3D-printed mini-hydrocyclone for high throughput particle separation: application to primary harvesting of microalgae.

机构信息

School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia.

出版信息

Lab Chip. 2017 Jul 11;17(14):2459-2469. doi: 10.1039/c7lc00294g.

Abstract

The separation of micro-sized particles in a continuous flow is crucial part of many industrial processes, from biopharmaceutical manufacturing to water treatment. Conventional separation techniques such as centrifugation and membrane filtration are largely limited by factors such as clogging, processing time and operation efficiency. Microfluidic based techniques have been gaining great attention in recent years as efficient and powerful approaches for particle-liquid separation. Yet the production of such systems using standard micro-fabrication techniques is proven to be tedious, costly and have cumbersome user interfaces, which all render commercialization difficult. Here, we demonstrate the design, fabrication and evaluation based on CFD simulation as well as experimentation of 3D-printed miniaturized hydrocyclones with smaller cut-size for high-throughput particle/cell sorting. The characteristics of the mini-cyclones were numerically investigated using computational fluid dynamics (CFD) techniques previously revealing that reduction in the size of the cyclone results in smaller cut-size of the particles. To showcase its utility, high-throughput algae harvesting from the medium with low energy input is demonstrated for the marine microalgae Tetraselmis suecica. Final microalgal biomass concentration was increased by 7.13 times in 11 minutes of operation time using our designed hydrocyclone (HC-1). We expect that this elegant approach can surmount the shortcomings of other microfluidic technologies such as clogging, low-throughput, cost and difficulty in operation. By moving away from production of planar microfluidic systems using conventional microfabrication techniques and embracing 3D-printing technology for construction of discrete elements, we envision 3D-printed mini-cyclones can be part of a library of standardized active and passive microfluidic components, suitable for particle-liquid separation.

摘要

在许多工业过程中,从生物制药制造到水处理,微尺度颗粒在连续流中的分离是至关重要的部分。传统的分离技术,如离心和膜过滤,在很大程度上受到堵塞、处理时间和操作效率等因素的限制。近年来,基于微流控的技术作为一种高效、强大的颗粒-液体分离方法受到了极大的关注。然而,使用标准微制造技术生产这种系统被证明是繁琐、昂贵的,并且具有繁琐的用户界面,这使得商业化变得困难。在这里,我们展示了基于 CFD 模拟的设计、制造和评估以及实验,使用 3D 打印技术制造了具有更小切割尺寸的小型化水力旋流器,用于高通量颗粒/细胞分选。使用计算流体动力学 (CFD) 技术对微型旋流器的特性进行了数值研究,结果表明旋流器尺寸的减小导致颗粒的切割尺寸减小。为了展示其用途,我们展示了从低能量输入的培养基中高通量收获海藻的实例,用于海洋微藻 Tetraselmis suecica。使用我们设计的水力旋流器 (HC-1),在 11 分钟的运行时间内,最终微藻生物质浓度增加了 7.13 倍。我们预计,这种优雅的方法可以克服其他微流控技术的缺点,如堵塞、低通量、成本和操作难度。通过避免使用传统微制造技术生产平面微流控系统,转而采用 3D 打印技术构建离散元件,我们设想 3D 打印微型旋流器可以成为标准化有源和无源微流控组件库的一部分,适用于颗粒-液体分离。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验