Suppr超能文献

同类型气味之间的规则相互作用模式及其在气味强度评估中的应用。

The Regular Interaction Pattern among Odorants of the Same Type and Its Application in Odor Intensity Assessment.

机构信息

School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.

School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.

出版信息

Sensors (Basel). 2017 Jul 13;17(7):1624. doi: 10.3390/s17071624.

Abstract

The olfactory evaluation function (e.g., odor intensity rating) of e-nose is always one of the most challenging issues in researches about odor pollution monitoring. But odor is normally produced by a set of stimuli, and odor interactions among constituents significantly influenced their mixture's odor intensity. This study investigated the odor interaction principle in odor mixtures of aldehydes and esters, respectively. Then, a modified vector model (MVM) was proposed and it successfully demonstrated the similarity of the odor interaction pattern among odorants of the same type. Based on the regular interaction pattern, unlike a determined empirical model only fit for a specific odor mixture in conventional approaches, the MVM distinctly simplified the odor intensity prediction of odor mixtures. Furthermore, the MVM also provided a way of directly converting constituents' chemical concentrations to their mixture's odor intensity. By combining the MVM with usual data-processing algorithm of e-nose, a new e-nose system was established for an odor intensity rating. Compared with instrumental analysis and human assessor, it exhibited accuracy well in both quantitative analysis (Pearson correlation coefficient was 0.999 for individual aldehydes ( = 12), 0.996 for their binary mixtures ( = 36) and 0.990 for their ternary mixtures ( = 60)) and odor intensity assessment (Pearson correlation coefficient was 0.980 for individual aldehydes ( = 15), 0.973 for their binary mixtures ( = 24), and 0.888 for their ternary mixtures ( = 25)). Thus, the observed regular interaction pattern is considered an important foundation for accelerating extensive application of olfactory evaluation in odor pollution monitoring.

摘要

电子鼻的嗅觉评价功能(例如气味强度评价)一直是气味污染监测研究中最具挑战性的问题之一。但是,气味通常是由一组刺激物产生的,并且成分之间的气味相互作用会显著影响它们混合物的气味强度。本研究分别研究了醛类和酯类气味混合物中的气味相互作用原理。然后,提出了一种改进的向量模型(MVM),并成功地证明了同类型气味剂之间气味相互作用模式的相似性。基于这种规则的相互作用模式,与传统方法中仅适用于特定气味混合物的确定经验模型不同,MVM 明显简化了气味混合物的气味强度预测。此外,MVM 还提供了一种将成分的化学浓度直接转换为混合物气味强度的方法。通过将 MVM 与电子鼻常用的数据处理算法相结合,建立了一种用于气味强度评价的新型电子鼻系统。与仪器分析和人工评估相比,它在定量分析(单个醛的皮尔逊相关系数为 0.999(n = 12),二元混合物为 0.996(n = 36),三元混合物为 0.990(n = 60))和气味强度评估(单个醛的皮尔逊相关系数为 0.980(n = 15),二元混合物为 0.973(n = 24),三元混合物为 0.888(n = 25))中均表现出很好的准确性。因此,观察到的规则相互作用模式被认为是加速嗅觉评价在气味污染监测中的广泛应用的重要基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8048/5539596/a8d19393a894/sensors-17-01624-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验