Nuñez Rebeca E, Javadov Sabzali, Escobales Nelson
Department of Physiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.
Clin Exp Pharmacol Physiol. 2017 Dec;44(12):1201-1212. doi: 10.1111/1440-1681.12816. Epub 2017 Sep 20.
Angiotensin II-preconditioning (APC) has been shown to reproduce the cardioprotective effects of ischaemic preconditioning (IPC), however, the molecular mechanisms mediating the effects of APC remain unknown. In this study, Langendorff-perfused rat hearts were subjected to IPC, APC or both (IPC/APC) followed by ischaemia-reperfusion (IR), to determine translocation of PKCε, PKCδ, Akt, Erk1/2, JNK, p38 MAPK and GSK-3β to mitochondria as an indicator of activation of the protein kinases. In agreement with previous observations, IPC, APC and IPC/APC increased the recovery of left ventricular developed pressure (LVDP), reduced infarct size (IS) and lactate dehydrogenase (LDH) release, compared to controls. These effects were associated with increased mitochondrial PKCε/PKCδ ratio, Akt, Erk1/2, JNK, and inhibition of permeability transition pore (mPTP) opening. Chelerythrine, a pan-PKC inhibitor, abolished the enhancements of PKCε but increased PKCδ expression, and inhibited Akt, Erk1/2, and JNK protein levels. The drug had no effect on the APC- and IPC/APC-induced cardioprotection as previously reported, but enhanced the post-ischaemic LVDP in controls. Losartan, an angiotensin II type 1 receptor (AT1-R) blocker, abolished the APC-stimulated increase of LVDP and reduced PKCε, Akt, Erk1/2, JNK, and p38. Both drugs reduced ischaemic contracture and LDH release, and abolished the inhibition of mPTP by the preconditioning. Chelerythrine also prevented the reduction of IS by APC and IPC/APC. These results suggest that the cardioprotection induced by APC and IPC/APC involves an AT1-R-dependent translocation of PKCε and survival kinases to the mitochondria leading to mPTP inhibition. In chelerythrine-treated hearts, however, alternate mechanisms appear to maintain cardiac function.
血管紧张素II预处理(APC)已被证明可重现缺血预处理(IPC)的心脏保护作用,然而,介导APC作用的分子机制仍不清楚。在本研究中,对采用Langendorff灌流的大鼠心脏进行IPC、APC或两者联合处理(IPC/APC),随后进行缺血再灌注(IR),以确定蛋白激酶Cε(PKCε)、蛋白激酶Cδ(PKCδ)、蛋白激酶B(Akt)、细胞外信号调节激酶1/2(Erk1/2)、c-Jun氨基末端激酶(JNK)、p38丝裂原活化蛋白激酶(p38 MAPK)和糖原合成酶激酶-3β(GSK-3β)向线粒体的转位,作为蛋白激酶激活的指标。与先前的观察结果一致,与对照组相比,IPC、APC和IPC/APC均增加了左心室发展压(LVDP)的恢复,减小了梗死面积(IS)并降低了乳酸脱氢酶(LDH)释放。这些效应与线粒体PKCε/PKCδ比值增加、Akt、Erk1/2、JNK升高以及通透性转换孔(mPTP)开放的抑制有关。全蛋白激酶C抑制剂白屈菜红碱消除了PKCε的增强,但增加了PKCδ的表达,并抑制了Akt、Erk1/2和JNK蛋白水平。如先前报道,该药物对APC和IPC/APC诱导的心脏保护作用无影响,但增强了对照组缺血后的LVDP。血管紧张素II 1型受体(AT1-R)阻滞剂氯沙坦消除了APC刺激的LVDP升高,并降低了PKCε、Akt、Erk1/2、JNK和p38。两种药物均降低了缺血挛缩和LDH释放,并消除了预处理对mPTP的抑制作用。白屈菜红碱还阻止了APC和IPC/APC对IS的减小。这些结果表明,APC和IPC/APC诱导的心脏保护作用涉及AT1-R依赖性的PKCε和存活激酶向线粒体的转位,从而导致mPTP抑制。然而,在白屈菜红碱处理的心脏中,似乎有其他机制维持心脏功能。