Faculty of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China.
Department of Mathematics, Faculty of Science, Menoufia University, Shebin El-kom 32511, Egypt.
Phys Rev E. 2017 Jun;95(6-1):062211. doi: 10.1103/PhysRevE.95.062211. Epub 2017 Jun 14.
In this research, the surface waves of a horizontal fluid layer open to air under gravity field and vertical temperature gradient effects are studied. The governing equations of this model are reformulated and converted to a nonlinear evolution equation, the perturbed Korteweg-de Vries (pKdV) equation. We investigate the latter equation, which includes dispersion, diffusion, and instability effects, in order to examine the evolution of long surface waves in a convective fluid. Dispersion relation of the pKdV equation and its properties are discussed. The Painlevé analysis is applied not only to check the integrability of the pKdV equation but also to establish the Bäcklund transformation form. In addition, traveling wave solutions and a general form of the multiple-soliton solutions of the pKdV equation are obtained via Bäcklund transformation, the simplest equation method using Bernoulli, Riccati, and Burgers' equations as simplest equations, and the factorization method.
在这项研究中,我们研究了重力场和垂直温度梯度作用下开放至空气的水平流体层的表面波。该模型的控制方程被重新制定并转化为非线性演化方程,即摄动 Korteweg-de Vries(pKdV)方程。我们研究了这个包含色散、扩散和不稳定性效应的后一个方程,以检验对流流体中长表面波的演化。讨论了 pKdV 方程的频散关系及其性质。应用 Painlevé 分析不仅检查了 pKdV 方程的可积性,而且建立了 Bäcklund 变换形式。此外,通过 Bäcklund 变换、使用 Bernoulli、Riccati 和 Burgers 方程作为最简单方程的最简单方程方法以及因式分解方法,获得了 pKdV 方程的行波解和多孤子解的一般形式。