Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA.
Department of Materials Science and Chemical Engineering, Stony Book University, Stony Brook, New York 11790, USA.
Nat Commun. 2017 Jul 17;8:16118. doi: 10.1038/ncomms16118.
The confinement of noble gases on nanostructured surfaces, in contrast to bulk materials, at non-cryogenic temperatures represents a formidable challenge. In this work, individual Ar atoms are trapped at 300 K in nano-cages consisting of (alumino)silicate hexagonal prisms forming a two-dimensional array on a planar surface. The trapping of Ar atoms is detected in situ using synchrotron-based ambient pressure X-ray photoelectron spectroscopy. The atoms remain in the cages upon heating to 400 K. The trapping and release of Ar is studied combining surface science methods and density functional theory calculations. While the frameworks stay intact with the inclusion of Ar atoms, the permeability of gasses (for example, CO) through them is significantly affected, making these structures also interesting candidates for tunable atomic and molecular sieves. These findings enable the study of individually confined noble gas atoms using surface science methods, opening up new opportunities for fundamental research.
在非低温条件下,将稀有气体限制在纳米结构表面上,与在块状材料中相比,这是一项艰巨的挑战。在这项工作中,单个 Ar 原子在由(铝硅酸盐)六方棱柱组成的纳米笼中被捕获,这些棱柱在平面表面上形成二维阵列。使用基于同步加速器的常压 X 射线光电子能谱原位检测 Ar 原子的捕获。将原子加热到 400K 时,它们仍留在笼中。通过结合表面科学方法和密度泛函理论计算来研究 Ar 的捕获和释放。虽然包含 Ar 原子后框架保持完整,但气体(例如 CO)通过它们的渗透率会受到显著影响,这使得这些结构也成为可调谐原子和分子筛的有趣候选者。这些发现使人们能够使用表面科学方法研究单独受限的稀有气体原子,为基础研究开辟了新的机会。