Suppr超能文献

认知控制神经结构中的情境与发育差异

Contextual and Developmental Differences in the Neural Architecture of Cognitive Control.

作者信息

Petrican Raluca, Grady Cheryl L

机构信息

Rotman Research Institute, Toronto, Ontario M6A 2E1, Canada, and

Rotman Research Institute, Toronto, Ontario M6A 2E1, Canada, and.

出版信息

J Neurosci. 2017 Aug 9;37(32):7711-7726. doi: 10.1523/JNEUROSCI.0667-17.2017. Epub 2017 Jul 17.

Abstract

Because both development and context impact functional brain architecture, the neural connectivity signature of a cognitive or affective predisposition may similarly vary across different ages and circumstances. To test this hypothesis, we investigated the effects of age and cognitive versus social-affective context on the stable and time-varying neural architecture of inhibition, the putative core cognitive control component, in a subsample ( = 359, 22-36 years, 174 men) of the Human Connectome Project. Among younger individuals, a neural signature of superior inhibition emerged in both stable and dynamic connectivity analyses. Dynamically, a context-free signature emerged as stronger segregation of internal cognition (default mode) and environmentally driven control (salience, cingulo-opercular) systems. A dynamic social-affective context-specific signature was observed most clearly in the visual system. Stable connectivity analyses revealed both context-free (greater default mode segregation) and context-specific (greater frontoparietal segregation for higher cognitive load; greater attentional and environmentally driven control system segregation for greater reward value) signatures of inhibition. Superior inhibition in more mature adulthood was typified by reduced segregation in the default network with increasing reward value and increased ventral attention but reduced cingulo-opercular and subcortical system segregation with increasing cognitive load. Failure to evidence this neural profile after the age of 30 predicted poorer life functioning. Our results suggest that distinguishable neural mechanisms underlie individual differences in cognitive control during different young adult stages and across tasks, thereby underscoring the importance of better understanding the interplay among dispositional, developmental, and contextual factors in shaping adaptive versus maladaptive patterns of thought and behavior. The brain's functional architecture changes across different contexts and life stages. To test whether the neural signature of a trait similarly varies, we investigated cognitive versus social-affective context effects on the stable and time-varying neural architecture of inhibition during a period of neurobehavioral fine-tuning (age 22-36 years). Younger individuals with superior inhibition showed distinguishable context-free and context-specific neural profiles, evidenced in both static and dynamic connectivity analyses. More mature individuals with superior inhibition evidenced only context-specific profiles, revealed in the static connectivity patterns linked to increased reward or cognitive load. Delayed expression of this profile predicted poorer life functioning. Our results underscore the importance of understanding the interplay among dispositional, developmental, and contextual factors in shaping behavior.

摘要

由于发育和环境都会影响大脑的功能结构,认知或情感倾向的神经连接特征可能同样会因年龄和环境的不同而有所差异。为了验证这一假设,我们在人类连接组计划的一个子样本(n = 359,年龄22 - 36岁,男性174名)中,研究了年龄以及认知与社会情感环境对抑制(公认的核心认知控制成分)的稳定和随时间变化的神经结构的影响。在较年轻的个体中,稳定和动态连接分析均显示出较强的抑制神经特征。动态方面,一种无背景特征表现为内部认知(默认模式)与环境驱动控制(突显、扣带 - 脑岛)系统之间更强的分离。动态社会情感背景特定特征在视觉系统中最为明显。稳定连接分析揭示了抑制的无背景特征(更强的默认模式分离)和背景特定特征(更高认知负荷下更大的额顶叶分离;更高奖励价值下更大的注意力和环境驱动控制系统分离)。在更成熟的成年期,更强的抑制表现为随着奖励价值增加默认网络中的分离减少、腹侧注意力增加,但随着认知负荷增加扣带 - 脑岛和皮质下系统的分离减少。30岁以后未能显示出这种神经特征预示着生活功能较差。我们的结果表明,在不同的青年期阶段和不同任务中,可区分的神经机制是认知控制个体差异的基础,从而强调了更好地理解性格、发育和环境因素之间的相互作用在塑造适应性与适应不良的思维和行为模式中的重要性。大脑的功能结构在不同的环境和生命阶段会发生变化。为了测试一种特质的神经特征是否同样会发生变化,我们在神经行为微调期(年龄22 - 36岁)研究了认知与社会情感环境对抑制的稳定和随时间变化的神经结构的影响。具有较强抑制能力的较年轻个体在静态和动态连接分析中均显示出可区分的无背景和背景特定神经特征。具有较强抑制能力的更成熟个体仅在与奖励或认知负荷增加相关的静态连接模式中显示出背景特定特征。这种特征的延迟表现预示着生活功能较差。我们的结果强调了理解性格、发育和环境因素之间的相互作用在塑造行为中的重要性。

相似文献

1
Contextual and Developmental Differences in the Neural Architecture of Cognitive Control.
J Neurosci. 2017 Aug 9;37(32):7711-7726. doi: 10.1523/JNEUROSCI.0667-17.2017. Epub 2017 Jul 17.
2
Trajectories of brain system maturation from childhood to older adulthood: Implications for lifespan cognitive functioning.
Neuroimage. 2017 Dec;163:125-149. doi: 10.1016/j.neuroimage.2017.09.025. Epub 2017 Sep 14.
3
The intrinsic neural architecture of inhibitory control: The role of development and emotional experience.
Neuropsychologia. 2019 Apr;127:93-105. doi: 10.1016/j.neuropsychologia.2019.01.021. Epub 2019 Feb 26.
4
Brain-environment alignment during movie watching predicts fluid intelligence and affective function in adulthood.
Neuroimage. 2021 Sep;238:118177. doi: 10.1016/j.neuroimage.2021.118177. Epub 2021 May 18.
5
The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition.
J Neurosci. 2016 Nov 30;36(48):12083-12094. doi: 10.1523/JNEUROSCI.2965-15.2016.
6
Effects of task complexity and age-differences on task-related functional connectivity of attentional networks.
Neuropsychologia. 2018 Jun;114:50-64. doi: 10.1016/j.neuropsychologia.2018.04.013. Epub 2018 Apr 12.
7
Reconfiguration of Brain Network Architectures between Resting-State and Complexity-Dependent Cognitive Reasoning.
J Neurosci. 2017 Aug 30;37(35):8399-8411. doi: 10.1523/JNEUROSCI.0485-17.2017. Epub 2017 Jul 31.
9
Key Brain Network Nodes Show Differential Cognitive Relevance and Developmental Trajectories during Childhood and Adolescence.
eNeuro. 2018 Jul 11;5(4). doi: 10.1523/ENEURO.0092-18.2018. eCollection 2018 Jul-Aug.
10
Dynamic reorganization of the frontal parietal network during cognitive control and episodic memory.
Cogn Affect Behav Neurosci. 2020 Feb;20(1):76-90. doi: 10.3758/s13415-019-00753-9.

引用本文的文献

1
Transient neural network dynamics in cognitive ageing.
Neurobiol Aging. 2021 Sep;105:217-228. doi: 10.1016/j.neurobiolaging.2021.01.035. Epub 2021 May 14.
3
The Neural Dynamics of Individual Differences in Episodic Autobiographical Memory.
eNeuro. 2020 Apr 20;7(2). doi: 10.1523/ENEURO.0531-19.2020. Print 2020 Mar/Apr.

本文引用的文献

1
Resting-State Network Topology Differentiates Task Signals across the Adult Life Span.
J Neurosci. 2017 Mar 8;37(10):2734-2745. doi: 10.1523/JNEUROSCI.2406-16.2017. Epub 2017 Feb 7.
2
The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition.
J Neurosci. 2016 Nov 30;36(48):12083-12094. doi: 10.1523/JNEUROSCI.2965-15.2016.
3
Multi-scale brain networks.
Neuroimage. 2017 Oct 15;160:73-83. doi: 10.1016/j.neuroimage.2016.11.006. Epub 2016 Nov 11.
4
Dynamic functional connectivity of neurocognitive networks in children.
Hum Brain Mapp. 2017 Jan;38(1):97-108. doi: 10.1002/hbm.23346. Epub 2016 Aug 18.
5
Distinct Global Brain Dynamics and Spatiotemporal Organization of the Salience Network.
PLoS Biol. 2016 Jun 7;14(6):e1002469. doi: 10.1371/journal.pbio.1002469. eCollection 2016 Jun.
6
Age differences in the functional interactions among the default, frontoparietal control, and dorsal attention networks.
Neurobiol Aging. 2016 May;41:159-172. doi: 10.1016/j.neurobiolaging.2016.02.020. Epub 2016 Mar 3.
8
The effect of aging on fronto-striatal reactive and proactive inhibitory control.
Neuroimage. 2016 May 15;132:51-58. doi: 10.1016/j.neuroimage.2016.02.031. Epub 2016 Feb 17.
9
Alterations in neural systems mediating cognitive flexibility and inhibition in mood disorders.
Hum Brain Mapp. 2016 Apr;37(4):1335-48. doi: 10.1002/hbm.23104. Epub 2016 Jan 20.
10
Dynamic fluctuations coincide with periods of high and low modularity in resting-state functional brain networks.
Neuroimage. 2016 Feb 15;127:287-297. doi: 10.1016/j.neuroimage.2015.12.001. Epub 2015 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验