Suppr超能文献

基于新型免疫组织化学的特征预测三阴性乳腺癌转移部位

Novel immunohistochemistry-based signatures to predict metastatic site of triple-negative breast cancers.

作者信息

Klimov Sergey, Rida Padmashree Cg, Aleskandarany Mohammed A, Green Andrew R, Ellis Ian O, Janssen Emiel Am, Rakha Emad A, Aneja Ritu

机构信息

Department of Biology, Georgia State University, Atlanta, GA 30303 USA.

Department of Cellular Pathology, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham NG5 1PB, UK.

出版信息

Br J Cancer. 2017 Sep 5;117(6):826-834. doi: 10.1038/bjc.2017.224. Epub 2017 Jul 18.

Abstract

BACKGROUND

Although distant metastasis (DM) in breast cancer (BC) is the most lethal form of recurrence and the most common underlying cause of cancer related deaths, the outcome following the development of DM is related to the site of metastasis. Triple negative BC (TNBC) is an aggressive form of BC characterised by early recurrences and high mortality. Athough multiple variables can be used to predict the risk of metastasis, few markers can predict the specific site of metastasis. This study aimed at identifying a biomarker signature to predict particular sites of DM in TNBC.

METHODS

A clinically annotated series of 322 TNBC were immunohistochemically stained with 133 biomarkers relevant to BC, to develop multibiomarker models for predicting metastasis to the bone, liver, lung and brain. Patients who experienced metastasis to each site were compared with those who did not, by gradually filtering the biomarker set via a two-tailed t-test and Cox univariate analyses. Biomarker combinations were finally ranked based on statistical significance, and evaluated in multivariable analyses.

RESULTS

Our final models were able to stratify TNBC patients into high risk groups that showed over 5, 6, 7 and 8 times higher risk of developing metastasis to the bone, liver, lung and brain, respectively, than low-risk subgroups. These models for predicting site-specific metastasis retained significance following adjustment for tumour size, patient age and chemotherapy status.

CONCLUSIONS

Our novel IHC-based biomarkers signatures, when assessed in primary TNBC tumours, enable prediction of specific sites of metastasis, and potentially unravel biomarkers previously unknown in site tropism.

摘要

背景

尽管乳腺癌(BC)的远处转移(DM)是最致命的复发形式,也是癌症相关死亡最常见的根本原因,但DM发生后的预后与转移部位有关。三阴性乳腺癌(TNBC)是一种侵袭性的乳腺癌,其特点是早期复发和高死亡率。虽然可以使用多个变量来预测转移风险,但很少有标志物能够预测转移的具体部位。本研究旨在确定一种生物标志物特征,以预测TNBC中DM的特定部位。

方法

对322例TNBC的临床注释系列进行免疫组织化学染色,使用133种与BC相关的生物标志物,以建立用于预测骨、肝、肺和脑转移的多生物标志物模型。通过双尾t检验和Cox单变量分析逐步筛选生物标志物集,将发生各部位转移的患者与未发生转移的患者进行比较。最终根据统计显著性对生物标志物组合进行排序,并在多变量分析中进行评估。

结果

我们的最终模型能够将TNBC患者分为高风险组,这些高风险组发生骨、肝、肺和脑转移的风险分别比低风险亚组高5倍、6倍、7倍和8倍以上。在对肿瘤大小、患者年龄和化疗状态进行调整后,这些预测部位特异性转移的模型仍然具有显著性。

结论

我们基于免疫组织化学的新型生物标志物特征,在原发性TNBC肿瘤中进行评估时,能够预测转移的特定部位,并有可能揭示以前在部位嗜性方面未知的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95ef/5589983/284079f60020/bjc2017224f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验