Trotter Benjamin, Otte Kathrin A, Schoppmann Kathrin, Hemmersbach Ruth, Fröhlich Thomas, Arnold Georg J, Laforsch Christian
Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany.
Animal Ecology I and BayCEER, Bayreuth University, Bayreuth, Germany.
NPJ Microgravity. 2015 Sep 24;1:15016. doi: 10.1038/npjmgrav.2015.16. eCollection 2015.
The waterflea is an interesting candidate for bioregenerative life support systems (BLSS). These animals are particularly promising because of their central role in the limnic food web and its mode of reproduction. However, the response of to altered gravity conditions has to be investigated, especially on the molecular level, to evaluate the suitability of for BLSS in space.
In this study, we applied a proteomic approach to identify key proteins and pathways involved in the response of to simulated microgravity generated by a two-dimensional (2D) clinostat. We analyzed five biological replicates using 2D-difference gel electrophoresis proteomic analysis.
We identified 109 protein spots differing in intensity (<0.05). Substantial fractions of these proteins are involved in actin microfilament organization, indicating the disruption of cytoskeletal structures during clinorotation. Furthermore, proteins involved in protein folding were identified, suggesting altered gravity induced breakdown of protein structures in general. In addition, simulated microgravity increased the abundance of energy metabolism-related proteins, indicating an enhanced energy demand of .
The affected biological processes were also described in other studies using different organisms and systems either aiming to simulate microgravity conditions or providing real microgravity conditions. Moreover, most of the protein sequences are well-conserved throughout taxa, indicating that the response to altered gravity conditions in follows a general concept. Data are available via ProteomeXchange with identifier PXD002096.
水蚤是生物再生生命支持系统(BLSS)的一个有趣候选对象。这些动物因其在淡水食物网中的核心作用及其繁殖方式而特别有前景。然而,必须研究水蚤对重力条件改变的反应,尤其是在分子水平上,以评估其在太空BLSS中的适用性。
在本研究中,我们应用蛋白质组学方法来鉴定参与水蚤对二维(2D)回转器产生的模拟微重力反应的关键蛋白质和途径。我们使用二维差异凝胶电泳蛋白质组分析对五个生物学重复进行了分析。
我们鉴定出109个强度不同(<0.05)的蛋白质点。这些蛋白质中有很大一部分参与肌动蛋白微丝组织,表明在回转过程中细胞骨架结构受到破坏。此外,还鉴定出参与蛋白质折叠的蛋白质,这表明重力改变通常会导致蛋白质结构的破坏。此外,模拟微重力增加了能量代谢相关蛋白质的丰度,表明水蚤的能量需求增加。
在其他使用不同生物体和系统的研究中也描述了受影响的生物过程,这些研究要么旨在模拟微重力条件,要么提供真实的微重力条件。此外,水蚤的大多数蛋白质序列在整个分类群中都高度保守,这表明水蚤对重力条件改变的反应遵循一个普遍概念。数据可通过ProteomeXchange获得,标识符为PXD002096。