Suppr超能文献

阿尔茨海默病的生物标志物:经典和新型候选物的综述。

Biomarkers for Alzheimer Disease: Classical and Novel Candidates' Review.

机构信息

IBN ZOHR University, LBVE, Polydisciplinary Faculty of Taroudant, B.P: 271, 83 000 Taroudant, Morocco; Hassan II University of Casablanca, Laboratory of Medical Genetics and Molecular Pathology, Faculty of Medicine and Pharmacy, B.P: 9154, Morocco.

Hassan II University of Casablanca, Laboratory of Pharmacology, Faculty of Medicine and Pharmacy, B.P: 9154, Morocco.

出版信息

Neuroscience. 2018 Feb 1;370:181-190. doi: 10.1016/j.neuroscience.2017.07.017. Epub 2017 Jul 17.

Abstract

The biomarkers may be useful for predictive diagnosis of Alzheimer's disease (AD). The current challenge is to diagnose it in its preclinical phase. The combination of cerebrospinal fluid (CSF) biomarkers and imaging has been investigated extensively for a number of years. It can provide an increased diagnostic accuracy. This review discusses the contribution of classical biomarkers to predict AD and highlights novel candidates identified as potential markers for AD. We referred to the electronic databases PubMed/Medline and Web of Science to search for articles that were published until February 2016. Sixty-two records were included in qualitative synthesis. In the first section, the results show the contribution of biomarkers to predict and track AD considered as classical biomarkers. In the second section, the results highlight the involvement of novel candidates that should be considered for future evaluation in the characterization of the AD progression. Reported findings open prospect to define noninvasive biomarkers to predict AD before symptoms onset.

摘要

这些生物标志物可能对预测阿尔茨海默病(AD)有用。目前的挑战是在其临床前阶段进行诊断。多年来,脑脊液(CSF)生物标志物与影像学的组合已被广泛研究。它可以提高诊断的准确性。这篇综述讨论了经典生物标志物对预测 AD 的贡献,并强调了被确定为 AD 潜在标志物的新候选物。我们查阅了电子数据库 PubMed/Medline 和 Web of Science,以搜索截至 2016 年 2 月发表的文章。有 62 篇记录被纳入定性综合分析。在第一部分,结果显示了生物标志物对预测和跟踪 AD 的贡献,被认为是经典生物标志物。在第二部分,结果强调了新候选物的参与,这些候选物应该在未来的 AD 进展特征评估中被考虑。所报道的研究结果为在症状出现前预测 AD 定义非侵入性生物标志物开辟了前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验