Rosenfeld Wenjamin, Burchardt Daniel, Garthoff Robert, Redeker Kai, Ortegel Norbert, Rau Markus, Weinfurter Harald
Fakultät für Physik, Ludwig-Maximilians-Universität München, D-80799 München, Germany.
Max-Planck Institut für Quantenoptik, D-85748 Garching, Germany.
Phys Rev Lett. 2017 Jul 7;119(1):010402. doi: 10.1103/PhysRevLett.119.010402. Epub 2017 Jul 6.
An experimental test of Bell's inequality allows ruling out any local-realistic description of nature by measuring correlations between distant systems. While such tests are conceptually simple, there are strict requirements concerning the detection efficiency of the involved measurements, as well as the enforcement of spacelike separation between the measurement events. Only very recently could both loopholes be closed simultaneously. Here we present a statistically significant, event-ready Bell test based on combining heralded entanglement of atoms separated by 398 m with fast and efficient measurements of the atomic spin states closing essential loopholes. We obtain a violation with S=2.221±0.033 (compared to the maximal value of 2 achievable with models based on local hidden variables) which allows us to refute the hypothesis of local realism with a significance level P<2.57×10^{-9}.
对贝尔不等式进行的实验测试能够通过测量远距离系统之间的相关性,排除任何对自然的局域实在性描述。虽然此类测试在概念上很简单,但对于所涉测量的探测效率以及测量事件之间类空分离的实施有着严格要求。直到最近,这两个漏洞才得以同时消除。在此,我们基于将相隔398米的原子的预示纠缠与原子自旋态的快速高效测量相结合,提出了一项具有统计显著性且随时可用的贝尔测试,从而消除了关键漏洞。我们得到了S = 2.221±0.033的违背结果(与基于局域隐变量的模型所能达到的最大值2相比),这使我们能够以显著性水平P < 2.57×10⁻⁹驳斥局域实在性假设。