Rico-Contreras José Octavio, Aguilar-Lasserre Alberto Alfonso, Méndez-Contreras Juan Manuel, López-Andrés Jhony Josué, Cid-Chama Gabriela
Division of Research and Postgraduate Studies, Instituto Tecnológico de Orizaba, Av. Oriente 9 # 852, Col. Emiliano Zapata, 94300, Orizaba, Mexico.
Division of Research and Postgraduate Studies, Instituto Tecnológico de Orizaba, Av. Oriente 9 # 852, Col. Emiliano Zapata, 94300, Orizaba, Mexico.
J Environ Manage. 2017 Nov 1;202(Pt 1):254-267. doi: 10.1016/j.jenvman.2017.07.034.
The objective of this study is to determine the economic return of poultry litter combustion in boilers to produce bioenergy (thermal and electrical), as this biomass has a high-energy potential due to its component elements, using fuzzy logic to predict moisture and identify the high-impact variables. This is carried out using a proposed 7-stage methodology, which includes a statistical analysis of agricultural systems and practices to identify activities contributing to moisture in poultry litter (for example, broiler chicken management, number of air extractors, and avian population density), and thereby reduce moisture to increase the yield of the combustion process. Estimates of poultry litter production and heating value are made based on 4 different moisture content percentages (scenarios of 25%, 30%, 35%, and 40%), and then a risk analysis is proposed using the Monte Carlo simulation to select the best investment alternative and to estimate the environmental impact for greenhouse gas mitigation. The results show that dry poultry litter (25%) is slightly better for combustion, generating 3.20% more energy. Reducing moisture from 40% to 25% involves considerable economic investment due to the purchase of equipment to reduce moisture; thus, when calculating financial indicators, the 40% scenario is the most attractive, as it is the current scenario. Thus, this methodology proposes a technology approach based on the use of advanced tools to predict moisture and representation of the system (Monte Carlo simulation), where the variability and uncertainty of the system are accurately represented. Therefore, this methodology is considered generic for any bioenergy generation system and not just for the poultry sector, whether it uses combustion or another type of technology.
本研究的目的是确定在锅炉中燃烧家禽粪便以生产生物能源(热能和电能)的经济回报,因为这种生物质由于其组成元素而具有很高的能源潜力,使用模糊逻辑来预测湿度并识别高影响变量。这是通过一种提议的七阶段方法来进行的,该方法包括对农业系统和实践进行统计分析,以识别导致家禽粪便湿度的活动(例如,肉鸡管理、抽气扇数量和禽群密度),从而降低湿度以提高燃烧过程的产量。基于4种不同的水分含量百分比(25%、30%、35%和40%的情景)对家禽粪便产量和热值进行估算,然后使用蒙特卡罗模拟进行风险分析,以选择最佳投资方案并估算温室气体减排的环境影响。结果表明,干家禽粪便(25%)更有利于燃烧,产生的能量多3.20%。由于购买降低水分的设备,将水分从40%降低到25%涉及相当大的经济投资;因此,在计算财务指标时,40%的情景最具吸引力,因为这是当前的情景。因此,该方法提出了一种基于使用先进工具预测湿度和系统表示(蒙特卡罗模拟)的技术方法,其中系统的变异性和不确定性得到了准确表示。因此,该方法被认为适用于任何生物能源生产系统,而不仅仅适用于家禽部门,无论其使用燃烧还是其他类型的技术。