SANOFI Research & Development, Translational Sciences Unit, 91385 Chilly-Mazarin, France.
Environmental Science and Technology Department, School of Applied Sciences, Cranfield University, Bedford, MK43 0AL, UK.
J Appl Toxicol. 2017 Dec;37(12):1396-1407. doi: 10.1002/jat.3507. Epub 2017 Jul 25.
The use of colloidal silica nanoparticles and sub-microparticles (SiPs) have been considered a very interesting strategy for drug delivery applications. In the present study, we have focused our attention on the suitability of these nanomaterials as potential carriers for dermal drug delivery, thus studying their toxicological profile in vitro, cellular uptake and intracellular localization in both human keratinocytes (K17) and human dermal fibroblasts (HDF) as a function of their particle size (SiPs of 20, 70, 200 and 500 nm). Full characterization of these aspects enabled us to observe a strong cell-type dependency in terms of cytotoxicity and cell internalization, whereas particle size was only relevant for ultra-small SiPs (20 nm), being the most toxic SiPs. For 70, 200 and 500 nm SiPs, the differences in uptake and intracellular trafficking determined the different toxicological profiles in K17 and HDF. In addition, these characteristics can further define different drug delivery strategies. Hence, phagocytosis has been identified as the main internalization mechanism for K17, and caveolae-mediated endocytosis for HDF. This relevant information led us to conclude that fibroblasts would be optimal targets for delivering delicate therapeutic molecules such as proteins or genetic material using SiPs while maintaining a low toxicity profile, whereas keratinocytes could enable accelerated drug release therapies based on SiPs.
胶体二氧化硅纳米颗粒和亚微米颗粒(SiPs)已被认为是药物传递应用的一种非常有趣的策略。在本研究中,我们专注于这些纳米材料作为潜在的经皮药物传递载体的适用性,因此研究了它们在体外的毒理学特性、在人角质形成细胞(K17)和人真皮成纤维细胞(HDF)中的细胞摄取和细胞内定位,这取决于它们的颗粒大小(20、70、200 和 500nm 的 SiPs)。对这些方面的全面表征使我们能够观察到细胞毒性和细胞内化方面的强烈细胞类型依赖性,而颗粒大小仅与超小 SiPs(20nm)相关,是最具毒性的 SiPs。对于 70、200 和 500nm 的 SiPs,摄取和细胞内转运的差异决定了 K17 和 HDF 中不同的毒理学特征。此外,这些特征可以进一步定义不同的药物传递策略。因此,吞噬作用已被确定为 K17 的主要内化机制,而网格蛋白介导的内吞作用则是 HDF 的主要内化机制。这些相关信息使我们得出结论,成纤维细胞是使用 SiPs 传递精细治疗分子(如蛋白质或遗传物质)的最佳靶标,同时保持低毒性特征,而角质形成细胞可以基于 SiPs 实现加速药物释放治疗。