Suppr超能文献

交流电场控制微尺度下的非牛顿丝状变细和液滴形成。

AC electric field controlled non-Newtonian filament thinning and droplet formation on the microscale.

机构信息

School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore.

出版信息

Lab Chip. 2017 Aug 22;17(17):2969-2981. doi: 10.1039/c7lc00420f.

Abstract

Monodispersity and fast generation are innate advantages of microfluidic droplets. Other than the normally adopted simple Newtonian fluids such as a water/oil emulsion system, fluids with complex rheology, namely, non-Newtonian fluids, which are being widely adopted in industries and bioengineering, have gained increasing research interest on the microscale. However, challenges occur in controlling the dynamic behavior due to their complex properties. In this sense, the AC electric field with merits of fast response and easiness in fulfilling "Lab on a chip" has attracted our attention. We design and fabricate flow-focusing microchannels with non-contact types of electrodes for the investigation. We firstly compare the formation of a non-Newtonian droplet with that of a Newtonian one under an AC electric field and discover that viscoelasticity contributes to the discrepancies significantly. Then we explore the effect of AC electric fields on the filament thinning and droplet formation dynamics of one non-Newtonian fluid which has a similar rheological behavior to bio samples, such as DNA or blood samples. We investigate the dynamics of the thinning process of the non-Newtonian filament under the influence of an AC electric field and implement a systematic exploration of the non-Newtonian droplet generation influenced by parameters such as the flow conditions (flow rate Q, capillary number Ca), fluid property (Weissenberg number Wi), applied voltage (U) and frequency (f) of the AC electric field. We present the dependencies of the flow condition and electric field on the non-Newtonian droplet formation dynamics, and conclude with an operating diagram, taking into consideration all the above-mentioned parameters. Results show that the electric field plays a critical role in controlling the thinning process of the filament and the size of the generated droplet. Furthermore, for the first time, we quantitatively measure the flow field of the non-Newtonian droplet formation under the influence of an AC electric field, assisted by a high-speed micro particle imaging velocimetry (μPIV) system. The flow field distributions obtained using the correlation algorithm show that the electric field generated Maxwell stress deforms the interface, changes the flow recirculation pattern, stimulates the instability and hence reduces the size of the non-Newtonian droplet. Finally, we analyze the impact of Maxwell stress by means of the electric capillary number Ca. Our findings reveal the rich physics of non-Newtonian fluids and widen the applications of electric field in non-Newtonian environments, which could be critical for bioengineering.

摘要

单分散性和快速生成是微流控液滴的固有优势。除了通常采用的简单牛顿流体(如水/油乳液系统)外,具有复杂流变特性的流体(即非牛顿流体)在工业和生物工程中得到了广泛应用,也在微尺度上得到了越来越多的研究关注。然而,由于其复杂的性质,控制其动力学行为会带来挑战。在这方面,具有快速响应和易于实现“片上实验室”优点的交流电场引起了我们的注意。我们设计并制造了具有非接触式电极的流聚焦微通道来进行研究。我们首先比较了在交流电场下非牛顿液滴和牛顿液滴的形成情况,发现粘弹性对差异有显著贡献。然后,我们研究了交流电场对类似于生物样本(如 DNA 或血液样本)的流变行为的一种非牛顿流体的细丝变细和液滴形成动力学的影响。我们研究了非牛顿细丝在交流电场影响下的变细过程的动力学,并对受流条件(流量 Q、毛细管数 Ca)、流体性质(Weissenberg 数 Wi)、施加电压(U)和频率(f)等参数影响的非牛顿液滴生成进行了系统的探索交流电场。我们展示了流动条件和电场对非牛顿液滴形成动力学的依赖性,并考虑到所有上述参数,得出了一个操作图。结果表明,电场在控制细丝的变细过程和生成液滴的大小方面起着关键作用。此外,我们首次通过高速微粒子成像测速(μPIV)系统,定量测量了交流电场影响下非牛顿液滴形成的流场。通过相关算法获得的流场分布表明,电场产生的麦克斯韦应力使界面变形,改变了流动再循环模式,刺激了不稳定性,从而减小了非牛顿液滴的尺寸。最后,我们通过电毛细数 Ca 来分析麦克斯韦应力的影响。我们的研究结果揭示了非牛顿流体的丰富物理特性,并拓宽了电场在非牛顿环境中的应用,这对生物工程可能至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验