Suppr超能文献

牡蛎礁作为碳源和碳汇。

Oyster reefs as carbon sources and sinks.

作者信息

Fodrie F Joel, Rodriguez Antonio B, Gittman Rachel K, Grabowski Jonathan H, Lindquist Niels L, Peterson Charles H, Piehler Michael F, Ridge Justin T

机构信息

Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557, USA

Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557, USA.

出版信息

Proc Biol Sci. 2017 Jul 26;284(1859). doi: 10.1098/rspb.2017.0891.

Abstract

Carbon burial is increasingly valued as a service provided by threatened vegetated coastal habitats. Similarly, shellfish reefs contain significant pools of carbon and are globally endangered, yet considerable uncertainty remains regarding shellfish reefs' role as sources (+) or sinks (-) of atmospheric CO While CO release is a by-product of carbonate shell production (then burial), shellfish also facilitate atmospheric-CO drawdown via filtration and rapid biodeposition of carbon-fixing primary producers. We provide a framework to account for the dual burial of inorganic and organic carbon, and demonstrate that decade-old experimental reefs on intertidal sandflats were net sources of CO (7.1 ± 1.2 MgC ha yr (µ ± s.e.)) resulting from predominantly carbonate deposition, whereas shallow subtidal reefs (-1.0 ± 0.4 MgC ha yr) and saltmarsh-fringing reefs (-1.3 ± 0.4 MgC ha yr) were dominated by organic-carbon-rich sediments and functioned as net carbon sinks (on par with vegetated coastal habitats). These landscape-level differences reflect gradients in shellfish growth, survivorship and shell bioerosion. Notably, down-core carbon concentrations in 100- to 4000-year-old reefs mirrored experimental-reef data, suggesting our results are relevant over centennial to millennial scales, although we note that these natural reefs appeared to function as slight carbon sources (0.5 ± 0.3 MgC ha yr). Globally, the historical mining of the top metre of shellfish reefs may have reintroduced more than 400 000 000 Mg of organic carbon into estuaries. Importantly, reef formation and destruction do not have reciprocal, counterbalancing impacts on atmospheric CO since excavated organic material may be remineralized while shell may experience continued preservation through reburial. Thus, protection of existing reefs could be considered as one component of climate mitigation programmes focused on the coastal zone.

摘要

碳埋藏作为受威胁的沿海植被栖息地所提供的一项服务,其价值日益受到重视。同样,贝类礁体含有大量碳库,且在全球范围内濒临灭绝,但关于贝类礁体作为大气二氧化碳的源(+)或汇(-)的作用仍存在相当大的不确定性。虽然二氧化碳释放是碳酸盐贝壳产生(随后埋藏)的副产品,但贝类也通过过滤和快速生物沉积固碳初级生产者来促进大气二氧化碳的吸收。我们提供了一个框架来解释无机碳和有机碳的双重埋藏,并证明潮间带沙滩上有十年历史的实验性礁体是二氧化碳的净源(7.1±1.2 MgC·ha⁻¹·yr⁻¹(均值±标准误)),这主要是由于碳酸盐沉积所致,而浅海潮下带礁体(-1.0±0.4 MgC·ha⁻¹·yr⁻¹)和盐沼边缘礁体(-1.3±0.4 MgC·ha⁻¹·yr⁻¹)则以富含有机碳的沉积物为主,起到了净碳汇的作用(与沿海植被栖息地相当)。这些景观层面的差异反映了贝类生长、存活率和贝壳生物侵蚀的梯度变化。值得注意的是,有100至4000年历史的礁体的岩芯碳浓度反映了实验性礁体的数据,这表明我们的结果在百年至千年尺度上具有相关性,尽管我们注意到这些天然礁体似乎起到了轻微碳源的作用(0.5±0.3 MgC·ha⁻¹·yr⁻¹)。在全球范围内,历史上对贝类礁体顶部一米的开采可能已将超过4亿Mg的有机碳重新引入河口。重要的是,礁体的形成和破坏对大气二氧化碳没有相互抵消的平衡影响,因为挖掘出的有机物质可能会被再矿化,而贝壳可能会通过再次埋藏而持续保存。因此,保护现有礁体可被视为沿海地区气候缓解计划的一个组成部分。

相似文献

1
Oyster reefs as carbon sources and sinks.
Proc Biol Sci. 2017 Jul 26;284(1859). doi: 10.1098/rspb.2017.0891.
4
Oyster reefs as natural breakwaters mitigate shoreline loss and facilitate fisheries.
PLoS One. 2011;6(8):e22396. doi: 10.1371/journal.pone.0022396. Epub 2011 Aug 5.
6
Net uptake of atmospheric CO2 by coastal submerged aquatic vegetation.
Glob Chang Biol. 2014 Jun;20(6):1873-84. doi: 10.1111/gcb.12543. Epub 2014 Mar 13.
7
Remnant oyster reefs as fish habitat within the estuarine seascape.
Mar Environ Res. 2022 Jul;179:105675. doi: 10.1016/j.marenvres.2022.105675. Epub 2022 Jun 6.
8
An experimental assessment of algal calcification as a potential source of atmospheric CO2.
PLoS One. 2020 Apr 29;15(4):e0231971. doi: 10.1371/journal.pone.0231971. eCollection 2020.
9
Effects of oyster aquaculture on carbon capture and removal in a tropical mangrove lagoon in southwestern Taiwan.
Sci Total Environ. 2022 Sep 10;838(Pt 3):156460. doi: 10.1016/j.scitotenv.2022.156460. Epub 2022 Jun 3.
10
Recruitment enhancement varies by taxonomic group and oyster reef habitat characteristics.
Ecol Appl. 2021 Jul;31(5):e02340. doi: 10.1002/eap.2340. Epub 2021 May 4.

引用本文的文献

3
Optimal life-cycle adaptation of coastal infrastructure under climate change.
Nat Commun. 2025 Jan 27;16(1):1076. doi: 10.1038/s41467-024-55679-9.
4
Beyond annual metrics: Linking seasonal population dynamics to vertical oyster reef growth.
Ecol Evol. 2024 Sep 17;14(9):e70238. doi: 10.1002/ece3.70238. eCollection 2024 Sep.
5
Bank erosion drastically reduces oyster reef filtration services in estuarine environments.
Sci Rep. 2024 Jul 9;14(1):15812. doi: 10.1038/s41598-024-66670-1.
7
Current and Future Potential of Shellfish and Algae Mariculture Carbon Sinks in China.
Int J Environ Res Public Health. 2022 Jul 21;19(14):8873. doi: 10.3390/ijerph19148873.
8
Meta-analysis of ecosystem services associated with oyster restoration.
Conserv Biol. 2023 Feb;37(1):e13966. doi: 10.1111/cobi.13966. Epub 2022 Sep 8.
9
The influence of mussel restoration on coastal carbon cycling.
Glob Chang Biol. 2022 Sep;28(17):5269-5282. doi: 10.1111/gcb.16287. Epub 2022 Jun 20.
10
Opportunities and Challenges for Including Oyster-Mediated Denitrification in Nitrogen Management Plans.
Estuaries Coast. 2021 Dec;44:2041-2055. doi: 10.1007/s12237-021-00936-z.

本文引用的文献

1
Living Shorelines: Coastal Resilience with a Blue Carbon Benefit.
PLoS One. 2015 Nov 16;10(11):e0142595. doi: 10.1371/journal.pone.0142595. eCollection 2015.
2
Recalcitrant dissolved organic carbon fractions.
Ann Rev Mar Sci. 2013;5:421-45. doi: 10.1146/annurev-marine-120710-100757. Epub 2012 Jul 16.
3
Historical ecology with real numbers: past and present extent and biomass of an imperilled estuarine habitat.
Proc Biol Sci. 2012 Sep 7;279(1742):3393-400. doi: 10.1098/rspb.2012.0313. Epub 2012 Jun 13.
4
Accelerating loss of seagrasses across the globe threatens coastal ecosystems.
Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12377-81. doi: 10.1073/pnas.0905620106. Epub 2009 Jul 8.
6
Patterns in the Fate of Production in Plant Communities.
Am Nat. 1999 Oct;154(4):449-468. doi: 10.1086/303244.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验