Fodrie F Joel, Rodriguez Antonio B, Gittman Rachel K, Grabowski Jonathan H, Lindquist Niels L, Peterson Charles H, Piehler Michael F, Ridge Justin T
Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557, USA
Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557, USA.
Proc Biol Sci. 2017 Jul 26;284(1859). doi: 10.1098/rspb.2017.0891.
Carbon burial is increasingly valued as a service provided by threatened vegetated coastal habitats. Similarly, shellfish reefs contain significant pools of carbon and are globally endangered, yet considerable uncertainty remains regarding shellfish reefs' role as sources (+) or sinks (-) of atmospheric CO While CO release is a by-product of carbonate shell production (then burial), shellfish also facilitate atmospheric-CO drawdown via filtration and rapid biodeposition of carbon-fixing primary producers. We provide a framework to account for the dual burial of inorganic and organic carbon, and demonstrate that decade-old experimental reefs on intertidal sandflats were net sources of CO (7.1 ± 1.2 MgC ha yr (µ ± s.e.)) resulting from predominantly carbonate deposition, whereas shallow subtidal reefs (-1.0 ± 0.4 MgC ha yr) and saltmarsh-fringing reefs (-1.3 ± 0.4 MgC ha yr) were dominated by organic-carbon-rich sediments and functioned as net carbon sinks (on par with vegetated coastal habitats). These landscape-level differences reflect gradients in shellfish growth, survivorship and shell bioerosion. Notably, down-core carbon concentrations in 100- to 4000-year-old reefs mirrored experimental-reef data, suggesting our results are relevant over centennial to millennial scales, although we note that these natural reefs appeared to function as slight carbon sources (0.5 ± 0.3 MgC ha yr). Globally, the historical mining of the top metre of shellfish reefs may have reintroduced more than 400 000 000 Mg of organic carbon into estuaries. Importantly, reef formation and destruction do not have reciprocal, counterbalancing impacts on atmospheric CO since excavated organic material may be remineralized while shell may experience continued preservation through reburial. Thus, protection of existing reefs could be considered as one component of climate mitigation programmes focused on the coastal zone.
碳埋藏作为受威胁的沿海植被栖息地所提供的一项服务,其价值日益受到重视。同样,贝类礁体含有大量碳库,且在全球范围内濒临灭绝,但关于贝类礁体作为大气二氧化碳的源(+)或汇(-)的作用仍存在相当大的不确定性。虽然二氧化碳释放是碳酸盐贝壳产生(随后埋藏)的副产品,但贝类也通过过滤和快速生物沉积固碳初级生产者来促进大气二氧化碳的吸收。我们提供了一个框架来解释无机碳和有机碳的双重埋藏,并证明潮间带沙滩上有十年历史的实验性礁体是二氧化碳的净源(7.1±1.2 MgC·ha⁻¹·yr⁻¹(均值±标准误)),这主要是由于碳酸盐沉积所致,而浅海潮下带礁体(-1.0±0.4 MgC·ha⁻¹·yr⁻¹)和盐沼边缘礁体(-1.3±0.4 MgC·ha⁻¹·yr⁻¹)则以富含有机碳的沉积物为主,起到了净碳汇的作用(与沿海植被栖息地相当)。这些景观层面的差异反映了贝类生长、存活率和贝壳生物侵蚀的梯度变化。值得注意的是,有100至4000年历史的礁体的岩芯碳浓度反映了实验性礁体的数据,这表明我们的结果在百年至千年尺度上具有相关性,尽管我们注意到这些天然礁体似乎起到了轻微碳源的作用(0.5±0.3 MgC·ha⁻¹·yr⁻¹)。在全球范围内,历史上对贝类礁体顶部一米的开采可能已将超过4亿Mg的有机碳重新引入河口。重要的是,礁体的形成和破坏对大气二氧化碳没有相互抵消的平衡影响,因为挖掘出的有机物质可能会被再矿化,而贝壳可能会通过再次埋藏而持续保存。因此,保护现有礁体可被视为沿海地区气候缓解计划的一个组成部分。