Social and Cognitive Networks Academic Research Center, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
Dept. of Computer Science, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180, USA.
Sci Rep. 2017 Jul 27;7(1):6699. doi: 10.1038/s41598-017-06873-x.
Most risk analysis models systematically underestimate the probability and impact of catastrophic events (e.g., economic crises, natural disasters, and terrorism) by not taking into account interconnectivity and interdependence of risks. To address this weakness, we propose the Cascading Alternating Renewal Process (CARP) to forecast interconnected global risks. However, assessments of the model's prediction precision are limited by lack of sufficient ground truth data. Here, we establish prediction precision as a function of input data size by using alternative long ground truth data generated by simulations of the CARP model with known parameters. We illustrate the approach on a model of fires in artificial cities assembled from basic city blocks with diverse housing. The results confirm that parameter recovery variance exhibits power law decay as a function of the length of available ground truth data. Using CARP, we also demonstrate estimation using a disparate dataset that also has dependencies: real-world prediction precision for the global risk model based on the World Economic Forum Global Risk Report. We conclude that the CARP model is an efficient method for predicting catastrophic cascading events with potential applications to emerging local and global interconnected risks.
大多数风险分析模型通过不考虑风险的互联性和相互依存性,系统性地低估了灾难性事件(如经济危机、自然灾害和恐怖主义)的可能性和影响。为了解决这一弱点,我们提出了级联交替更新过程(CARP)来预测相互关联的全球风险。然而,由于缺乏足够的真实数据,对模型预测精度的评估受到限制。在这里,我们通过使用具有已知参数的 CARP 模型的模拟生成的替代长真实数据来建立输入数据大小与预测精度之间的函数关系。我们在一个由具有不同住房的基本城市街区组装而成的人工城市火灾模型上展示了该方法。结果证实,参数恢复方差随可用真实数据长度的函数呈幂律衰减。我们还使用具有依赖性的不同数据集(基于世界经济论坛全球风险报告的全球风险模型的真实世界预测精度)进行了 CARP 估计。我们的结论是,CARP 模型是一种预测灾难性级联事件的有效方法,它具有应用于新兴的本地和全球相互关联风险的潜力。