Suppr超能文献

用于网络物理系统的双尺度空间分层立体匹配

Hierarchical Stereo Matching in Two-Scale Space for Cyber-Physical System.

作者信息

Choi Eunah, Lee Sangyoon, Hong Hyunki

机构信息

Department of Imaging Science and Arts, GSAIM, Chung-Ang University, 221 Huksuk-dong, Dongjak-ku, Seoul 156-756, Korea.

School of Integrative Engineering, Chung-Ang University, 221 Huksuk-dong, Dongjak-ku, Seoul 156-756, Korea.

出版信息

Sensors (Basel). 2017 Jul 21;17(7):1680. doi: 10.3390/s17071680.

Abstract

Dense disparity map estimation from a high-resolution stereo image is a very difficult problem in terms of both matching accuracy and computation efficiency. Thus, an exhaustive disparity search at full resolution is required. In general, examining more pixels in the stereo view results in more ambiguous correspondences. When a high-resolution image is down-sampled, the high-frequency components of the fine-scaled image are at risk of disappearing in the coarse-resolution image. Furthermore, if erroneous disparity estimates caused by missing high-frequency components are propagated across scale space, ultimately, false disparity estimates are obtained. To solve these problems, we introduce an efficient hierarchical stereo matching method in two-scale space. This method applies disparity estimation to the reduced-resolution image, and the disparity result is then up-sampled to the original resolution. The disparity estimation values of the high-frequency (or edge component) regions of the full-resolution image are combined with the up-sampled disparity results. In this study, we extracted the high-frequency areas from the scale-space representation by using difference of Gaussian (DoG) or found edge components, using a Canny operator. Then, edge-aware disparity propagation was used to refine the disparity map. The experimental results show that the proposed algorithm outperforms previous methods.

摘要

从高分辨率立体图像估计密集视差图,在匹配精度和计算效率方面都是一个非常困难的问题。因此,需要在全分辨率下进行详尽的视差搜索。一般来说,在立体视图中检查更多像素会导致更多模糊的对应关系。当高分辨率图像被下采样时,精细尺度图像的高频分量有在粗分辨率图像中消失的风险。此外,如果由缺失高频分量引起的错误视差估计在尺度空间中传播,最终会得到错误的视差估计。为了解决这些问题,我们在双尺度空间中引入了一种高效的分层立体匹配方法。该方法将视差估计应用于降分辨率图像,然后将视差结果上采样到原始分辨率。全分辨率图像高频(或边缘分量)区域的视差估计值与上采样后的视差结果相结合。在本研究中,我们使用高斯差分(DoG)从尺度空间表示中提取高频区域,或使用Canny算子找到边缘分量。然后,使用边缘感知视差传播对视差图进行细化。实验结果表明,所提出的算法优于先前的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c6c/5539473/1b2fc3ed29f2/sensors-17-01680-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验