Kim Minji, Furuzono Tomoya, Yamakuni Kanae, Li Yongjia, Kim Young-Il, Takahashi Haruya, Ohue-Kitano Ryuji, Jheng Huei-Fen, Takahashi Nobuyuki, Kano Yuriko, Yu Rina, Kishino Shigenobu, Ogawa Jun, Uchida Kunitoshi, Yamazaki Jun, Tominaga Makoto, Kawada Teruo, Goto Tsuyoshi
Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan.
FASEB J. 2017 Nov;31(11):5036-5048. doi: 10.1096/fj.201700151R. Epub 2017 Jul 28.
Gut microbiota can regulate the host energy metabolism; however, the underlying mechanisms that could involve gut microbiota-derived compounds remain to be understood. Therefore, in this study, we investigated the effects of KetoA [10-oxo-12()-octadecenoic acid]-a linoleic acid metabolite produced by gut lactic acid bacteria-on whole-body energy metabolism and found that dietary intake of KetoA could enhance energy expenditure in mice, thereby protecting mice from diet-induced obesity. By using Ca imaging and whole-cell patch-clamp methods, KetoA was noted to potently activate transient receptor potential vanilloid 1 (TRPV1) and enhance noradrenalin turnover in adipose tissues. In addition, KetoA up-regulated genes that are related to brown adipocyte functions, including uncoupling protein 1 (UCP1) in white adipose tissue (WAT), which was later diminished in the presence of a β-adrenoreceptor blocker. By using obese and diabetic model KK-Ay mice, we further show that KetoA intake ameliorated obesity-associated metabolic disorders. In the absence of any observed KetoA-induced antiobesity effect or UCP1 up-regulation in TRPV1-deficient mice, we prove that the antiobesity effect of KetoA was caused by TRPV1 activation-mediated browning in WAT. KetoA produced in the gut could therefore be involved in the regulation of host energy metabolism.-Kim, M., Furuzono, T., Yamakuni, K., Li, Y., Kim, Y.-I., Takahashi, H., Ohue-Kitano, R., Jheng, H.-F., Takahashi, N., Kano, Y., Yu, R., Kishino, S., Ogawa, J., Uchida, K., Yamazaki, J., Tominaga, M., Kawada, T., Goto, T. 10-oxo-12()-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, enhances energy metabolism by activation of TRPV1.
肠道微生物群可调节宿主能量代谢;然而,涉及肠道微生物群衍生化合物的潜在机制仍有待了解。因此,在本研究中,我们研究了肠道乳酸菌产生的亚油酸代谢产物酮A[10-氧代-12()-十八碳烯酸]对全身能量代谢的影响,发现饮食摄入酮A可增强小鼠的能量消耗,从而保护小鼠免受饮食诱导的肥胖。通过使用钙成像和全细胞膜片钳方法,发现酮A能有效激活瞬时受体电位香草酸受体1(TRPV1)并增强脂肪组织中去甲肾上腺素的周转。此外,酮A上调了与棕色脂肪细胞功能相关的基因,包括白色脂肪组织(WAT)中的解偶联蛋白1(UCP1),而在β-肾上腺素能受体阻滞剂存在的情况下,这种上调作用随后减弱。通过使用肥胖和糖尿病模型KK-Ay小鼠,我们进一步表明,摄入酮A可改善与肥胖相关的代谢紊乱。在TRPV1缺陷小鼠中未观察到酮A诱导的抗肥胖作用或UCP1上调,我们证明酮A的抗肥胖作用是由TRPV1激活介导的WAT褐变引起的。因此,肠道中产生的酮A可能参与宿主能量代谢的调节。-金,M.,古吕宗野,T.,山川邦夫,K.,李,Y.,金,Y.-I.,高桥浩,H.,大上木野,R.,郑,H.-F.,高桥直,N.,加野洋,Y.,于,R.,岸野史,S.,小川纯,J.,内田健,K.,山崎纯,J.,富永正敏,M.,川田哲也,T.,后藤敏,T. 10-氧代-12()-十八碳烯酸,一种肠道乳酸菌产生的亚油酸代谢产物,通过激活TRPV1增强能量代谢