Suppr超能文献

全无机卤化物钙钛矿中的超低热导率。

Ultralow thermal conductivity in all-inorganic halide perovskites.

机构信息

Department of Chemistry, University of California, Berkeley, CA 94720.

Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.

出版信息

Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):8693-8697. doi: 10.1073/pnas.1711744114. Epub 2017 Jul 31.

Abstract

Controlling the flow of thermal energy is crucial to numerous applications ranging from microelectronic devices to energy storage and energy conversion devices. Here, we report ultralow lattice thermal conductivities of solution-synthesized, single-crystalline all-inorganic halide perovskite nanowires composed of CsPbI (0.45 ± 0.05 W·m·K), CsPbBr (0.42 ± 0.04 W·m·K), and CsSnI (0.38 ± 0.04 W·m·K). We attribute this ultralow thermal conductivity to the cluster rattling mechanism, wherein strong optical-acoustic phonon scatterings are driven by a mixture of 0D/1D/2D collective motions. Remarkably, CsSnI possesses a rare combination of ultralow thermal conductivity, high electrical conductivity (282 S·cm), and high hole mobility (394 cm·V·s). The unique thermal transport properties in all-inorganic halide perovskites hold promise for diverse applications such as phononic and thermoelectric devices. Furthermore, the insights obtained from this work suggest an opportunity to discover low thermal conductivity materials among unexplored inorganic crystals beyond caged and layered structures.

摘要

控制热能的流动对于从微电子器件到储能和能量转换器件等众多应用至关重要。在这里,我们报告了由溶液合成的、单晶全无机卤化物钙钛矿纳米线的超低晶格热导率,这些纳米线由 CsPbI(0.45±0.05 W·m·K)、CsPbBr(0.42±0.04 W·m·K)和 CsSnI(0.38±0.04 W·m·K)组成。我们将这种超低热导率归因于团簇颤动机制,其中由 0D/1D/2D 集体运动的混合物驱动强烈的光声声子散射。值得注意的是,CsSnI 具有超低热导率、高电导率(282 S·cm)和高空穴迁移率(394 cm·V·s)的罕见组合。全无机卤化物钙钛矿中的独特热输运性质有望在声子和热电器件等各种应用中得到应用。此外,这项工作的启示表明,有机会在笼状和层状结构之外的未知无机晶体中发现具有低热导率的材料。

相似文献

1
Ultralow thermal conductivity in all-inorganic halide perovskites.
Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):8693-8697. doi: 10.1073/pnas.1711744114. Epub 2017 Jul 31.
2
Origin of Ultralow Thermal Conductivity in Metal Halide Perovskites.
ACS Appl Mater Interfaces. 2023 Jun 7;15(22):26755-26765. doi: 10.1021/acsami.3c03499. Epub 2023 May 26.
5
High-Throughput Screening of Rattling-Induced Ultralow Lattice Thermal Conductivity in Semiconductors.
J Am Chem Soc. 2022 Mar 16;144(10):4448-4456. doi: 10.1021/jacs.1c11887. Epub 2022 Mar 1.
6
Phonon Speed, Not Scattering, Differentiates Thermal Transport in Lead Halide Perovskites.
Nano Lett. 2017 Sep 13;17(9):5734-5739. doi: 10.1021/acs.nanolett.7b02696. Epub 2017 Aug 21.
7
Concerted Rattling in CsAg5 Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance.
Angew Chem Int Ed Engl. 2016 Sep 12;55(38):11431-6. doi: 10.1002/anie.201605015. Epub 2016 Aug 11.
9
Halide Perovskites: Thermal Transport and Prospects for Thermoelectricity.
Adv Sci (Weinh). 2020 Apr 16;7(10):1903389. doi: 10.1002/advs.201903389. eCollection 2020 May.

引用本文的文献

1
Strong crystalline thermal insulation induced by extended antibonding states.
Nat Commun. 2025 Aug 26;16(1):7941. doi: 10.1038/s41467-025-63300-w.
2
Temperature-invariant crystal-glass heat conduction: From meteorites to refractories.
Proc Natl Acad Sci U S A. 2025 Jul 15;122(28):e2422763122. doi: 10.1073/pnas.2422763122. Epub 2025 Jul 11.
3
Anomalous Glassy Thermal Conductivity in a Perovskite Bismuthate Induced by Structural Dynamic Instability.
Adv Sci (Weinh). 2025 Aug;12(31):e02379. doi: 10.1002/advs.202502379. Epub 2025 Jun 4.
6
Efficient p-Type Doping of Tin Halide Perovskite via Sequential Diffusion for Thermoelectrics.
Small Sci. 2022 Mar 6;2(6):2200004. doi: 10.1002/smsc.202200004. eCollection 2022 Jun.
7
Improved Efficiency and Stability in Inverted-Structure Solar Cells with Lead-Free All-Inorganic Halide Perovskite CsSnZnBr.
ACS Appl Mater Interfaces. 2025 Mar 12;17(10):15613-15620. doi: 10.1021/acsami.4c21442. Epub 2025 Feb 28.
8
Resolving the dynamic correlated disorder in KTaNbO.
Proc Natl Acad Sci U S A. 2025 Feb 18;122(7):e2419159122. doi: 10.1073/pnas.2419159122. Epub 2025 Feb 10.
9
Observation of Extraordinary Vibration Scatterings Induced by Strong Anharmonicity in Lead-Free Halide Double Perovskites.
Adv Sci (Weinh). 2025 Mar;12(10):e2408149. doi: 10.1002/advs.202408149. Epub 2025 Jan 20.
10
Reduced Thermal Conductivity and Improved Stability by B-Site Doping in Tin Halide Perovskites.
J Phys Chem Lett. 2025 Jan 16;16(2):525-536. doi: 10.1021/acs.jpclett.4c02618. Epub 2025 Jan 6.

本文引用的文献

1
Efficient Low-Temperature Solution-Processed Lead-Free Perovskite Infrared Light-Emitting Diodes.
Adv Mater. 2016 Sep;28(36):8029-8036. doi: 10.1002/adma.201601024. Epub 2016 Jul 4.
2
Thermal Transport in Silicon Nanowires at High Temperature up to 700 K.
Nano Lett. 2016 Jul 13;16(7):4133-40. doi: 10.1021/acs.nanolett.6b00956. Epub 2016 May 31.
3
The Effects of the Organic-Inorganic Interactions on the Thermal Transport Properties of CH3NH3PbI3.
Nano Lett. 2016 Apr 13;16(4):2749-53. doi: 10.1021/acs.nanolett.6b00457. Epub 2016 Mar 24.
4
Lasing in robust cesium lead halide perovskite nanowires.
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):1993-8. doi: 10.1073/pnas.1600789113. Epub 2016 Feb 9.
5
A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells.
Science. 2016 Jan 8;351(6269):151-5. doi: 10.1126/science.aad5845.
6
Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe.
Science. 2016 Jan 8;351(6269):141-4. doi: 10.1126/science.aad3749. Epub 2015 Nov 26.
7
Better thermoelectrics through glass-like crystals.
Nat Mater. 2015 Dec;14(12):1182-5. doi: 10.1038/nmat4461.
8
Ultra-Low Thermal Conductivity in Organic-Inorganic Hybrid Perovskite CH3NH3PbI3.
J Phys Chem Lett. 2014 Jul 17;5(14):2488-92. doi: 10.1021/jz5012109. Epub 2014 Jul 8.
9
Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires.
J Am Chem Soc. 2015 Jul 29;137(29):9230-3. doi: 10.1021/jacs.5b05404. Epub 2015 Jul 16.
10
Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors.
Nat Mater. 2015 Jun;14(6):636-42. doi: 10.1038/nmat4271. Epub 2015 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验