Taylor Adam B, Zijlstra Peter
Molecular Biosensing for Medical Diagnostics, Faculty of Applied Physics, & Institute for Complex Molecular Systems, Eindhoven University of Technology , PO Box 513, 5600 MB Eindhoven, The Netherlands.
ACS Sens. 2017 Aug 25;2(8):1103-1122. doi: 10.1021/acssensors.7b00382. Epub 2017 Aug 8.
Single-molecule detection has long relied on fluorescent labeling with high quantum-yield fluorophores. Plasmon-enhanced detection circumvents the need for labeling by allowing direct optical detection of weakly emitting and completely nonfluorescent species. This review focuses on recent advances in single molecule detection using plasmonic metal nanostructures as a sensing platform, particularly using a single particle-single molecule approach. In the past decade two mechanisms for plasmon-enhanced single-molecule detection have been demonstrated: (1) by plasmonically enhancing the emission of weakly fluorescent biomolecules, or (2) by monitoring shifts of the plasmon resonance induced by single-molecule interactions. We begin with a motivation regarding the importance of single molecule detection, and advantages plasmonic detection offers. We describe both detection mechanisms and discuss challenges and potential solutions. We finalize by highlighting the exciting possibilities in analytical chemistry and medical diagnostics.
单分子检测长期以来一直依赖于使用高量子产率荧光团进行荧光标记。等离子体增强检测通过允许直接光学检测弱发射和完全非荧光的物质,从而避免了标记的需要。本综述重点关注使用等离子体金属纳米结构作为传感平台的单分子检测的最新进展,特别是使用单粒子-单分子方法。在过去十年中,已经证明了两种等离子体增强单分子检测机制:(1)通过等离子体增强弱荧光生物分子的发射,或(2)通过监测单分子相互作用引起的等离子体共振的位移。我们首先阐述单分子检测的重要性以及等离子体检测的优势。我们描述了这两种检测机制,并讨论了挑战和潜在的解决方案。最后,我们强调了分析化学和医学诊断中令人兴奋的可能性。