Suppr超能文献

REDD1 在炎症途径激活中的作用。

Implication of REDD1 in the activation of inflammatory pathways.

机构信息

Université Nice Côte d'Azur, Inserm U1065, C3M, Team Cellular and Molecular Physiopathology of Obesity, Nice, France.

Université Nice Côte d'Azur, Inserm U1065, C3M, Team " Study of the melanocytic differentiation applied to vitiligo and melanoma: from the patient to the molecular mechanisms", Nice, France.

出版信息

Sci Rep. 2017 Aug 1;7(1):7023. doi: 10.1038/s41598-017-07182-z.

Abstract

In response to endotoxemia, the organism triggers an inflammatory response, and the visceral adipose tissue represents a major source of proinflammatory cytokines. The regulation of inflammation response in the adipose tissue is thus of crucial importance. We demonstrated that Regulated in development and DNA damage response-1 (REDD1) is involved in inflammation. REDD1 expression was increased in response to lipopolysaccharide (LPS) in bone marrow derived macrophages (BMDM) and in epidydimal adipose tissue. Loss of REDD1 protected the development of inflammation, since the expression of proinflammatory cytokines (TNFα, IL-6, IL-1β) was decreased in adipose tissue of REDD1 mice injected with LPS compared to wild-type mice. This decrease was associated with an inhibition of the activation of p38MAPK, JNK, NF-κB and NLRP3 inflammasome leading to a reduction of IL-1β secretion in response to LPS and ATP in REDD1 BMDM. Although REDD1 is an inhibitor of mTORC1, loss of REDD1 decreased inflammation independently of mTORC1 activation but more likely through oxidative stress regulation. Absence of REDD1 decreases ROS associated with a dysregulation of Nox-1 and GPx3 expression. Absence of REDD1 in macrophages decreases the development of insulin resistance in adipocyte-macrophage coculture. Altogether, REDD1 appears to be a key player in the control of inflammation.

摘要

针对内毒素血症,机体引发炎症反应,而内脏脂肪组织则是促炎细胞因子的主要来源。因此,脂肪组织中炎症反应的调节至关重要。我们发现调控发育和 DNA 损伤反应蛋白 1(REDD1)参与了炎症反应。REDD1 的表达在骨髓来源的巨噬细胞(BMDM)和附睾脂肪组织中受到脂多糖(LPS)的刺激而增加。REDD1 的缺失保护了炎症的发展,因为与野生型小鼠相比,注射 LPS 的 REDD1 小鼠的脂肪组织中促炎细胞因子(TNFα、IL-6、IL-1β)的表达减少。这种减少与 p38MAPK、JNK、NF-κB 和 NLRP3 炎症小体的激活抑制有关,导致 LPS 和 ATP 刺激下 REDD1 BMDM 中 IL-1β 的分泌减少。尽管 REDD1 是 mTORC1 的抑制剂,但 REDD1 的缺失减少炎症的发生与 mTORC1 的激活无关,而更可能是通过氧化应激的调节。REDD1 的缺失减少了与 Nox-1 和 GPx3 表达失调相关的 ROS。巨噬细胞中 REDD1 的缺失减少了脂肪细胞-巨噬细胞共培养物中胰岛素抵抗的发展。总之,REDD1 似乎是控制炎症的关键因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c65e/5539207/4a9796a0267e/41598_2017_7182_Fig1_HTML.jpg

相似文献

1
Implication of REDD1 in the activation of inflammatory pathways.
Sci Rep. 2017 Aug 1;7(1):7023. doi: 10.1038/s41598-017-07182-z.
3
Aloe vera downregulates LPS-induced inflammatory cytokine production and expression of NLRP3 inflammasome in human macrophages.
Mol Immunol. 2013 Dec;56(4):471-9. doi: 10.1016/j.molimm.2013.05.005. Epub 2013 Aug 1.
5
REDD1 promotes obesity-induced metabolic dysfunction via atypical NF-κB activation.
Nat Commun. 2022 Oct 22;13(1):6303. doi: 10.1038/s41467-022-34110-1.
6
7
Eplerenone prevented obesity-induced inflammasome activation and glucose intolerance.
J Endocrinol. 2017 Dec;235(3):179-191. doi: 10.1530/JOE-17-0351. Epub 2017 Aug 30.
9
Lipopolysaccharide induction of REDD1 is mediated by two distinct CREB-dependent mechanisms in macrophages.
FEBS Lett. 2015 Sep 14;589(19 Pt B):2859-65. doi: 10.1016/j.febslet.2015.08.004. Epub 2015 Aug 18.

引用本文的文献

5
REDD1-dependent GSK3β signaling in podocytes promotes canonical NF-κB activation in diabetic nephropathy.
J Biol Chem. 2025 Mar;301(3):108244. doi: 10.1016/j.jbc.2025.108244. Epub 2025 Jan 27.
6
Deletion of the stress response protein REDD1 prevents sodium iodate-induced RPE damage and photoreceptor loss.
Geroscience. 2025 Apr;47(2):1789-1803. doi: 10.1007/s11357-024-01362-2. Epub 2024 Oct 5.
9
The stress-responsive protein REDD1 and its pathophysiological functions.
Exp Mol Med. 2023 Sep;55(9):1933-1944. doi: 10.1038/s12276-023-01056-3. Epub 2023 Sep 1.

本文引用的文献

1
Regulation of skeletal muscle insulin-stimulated signaling through the MEK-REDD1-mTOR axis.
Biochem Biophys Res Commun. 2017 Jan 22;482(4):1067-1072. doi: 10.1016/j.bbrc.2016.11.159. Epub 2016 Nov 29.
2
Macrophage Metabolism Controls Tumor Blood Vessel Morphogenesis and Metastasis.
Cell Metab. 2016 Nov 8;24(5):701-715. doi: 10.1016/j.cmet.2016.09.008. Epub 2016 Oct 20.
3
Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages.
Cell. 2016 Oct 6;167(2):457-470.e13. doi: 10.1016/j.cell.2016.08.064. Epub 2016 Sep 22.
4
Is REDD1 a Metabolic Éminence Grise?
Trends Endocrinol Metab. 2016 Dec;27(12):868-880. doi: 10.1016/j.tem.2016.08.005. Epub 2016 Sep 6.
5
NOX4-dependent fatty acid oxidation promotes NLRP3 inflammasome activation in macrophages.
Nat Med. 2016 Sep;22(9):1002-12. doi: 10.1038/nm.4153. Epub 2016 Jul 25.
6
Converging roles of caspases in inflammasome activation, cell death and innate immunity.
Nat Rev Immunol. 2016 Jan;16(1):7-21. doi: 10.1038/nri.2015.7. Epub 2015 Dec 14.
7
Lipopolysaccharide induction of REDD1 is mediated by two distinct CREB-dependent mechanisms in macrophages.
FEBS Lett. 2015 Sep 14;589(19 Pt B):2859-65. doi: 10.1016/j.febslet.2015.08.004. Epub 2015 Aug 18.
10
Lack of REDD1 reduces whole body glucose and insulin tolerance, and impairs skeletal muscle insulin signaling.
Biochem Biophys Res Commun. 2014 Oct 31;453(4):778-83. doi: 10.1016/j.bbrc.2014.10.032. Epub 2014 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验