Dept. of Brain and Cognitive Sciences, Ben Gurion University, Be'er-Sheva 8410501, Israel; Zlotowski Center for Neuroscience, Ben Gurion University, Be'er-Sheva 8410501, Israel.
Zlotowski Center for Neuroscience, Ben Gurion University, Be'er-Sheva 8410501, Israel; Depts. of Physiology and Cell Biology and Physics, Ben Gurion University, Be'er-Sheva 8410501, Israel.
Neuroscience. 2018 Jan 1;368:29-45. doi: 10.1016/j.neuroscience.2017.07.054. Epub 2017 Aug 1.
Neurons in one barrel in layer 4 (L4) in the mouse vibrissa somatosensory cortex are innervated mostly by neurons from the VPM nucleus and by other neurons within the same barrel. During quiet wakefulness or whisking in air, thalamic inputs vary slowly in time, and excitatory neurons rarely fire. A barrel in L4 contains a modest amount of neurons; the synaptic conductances are not very strong and connections are not sparse. Are the dynamical properties of the L4 circuit similar to those expected from fluctuation-dominated, balanced networks observed for large, strongly coupled and sparse cortical circuits? To resolve this question, we analyze a network of 150 inhibitory parvalbumin-expressing fast-spiking inhibitory interneurons innervated by the VPM thalamus with random connectivity, without or with 1600 low-firing excitatory neurons. Above threshold, the population-average firing rate of inhibitory cortical neurons increases linearly with the thalamic firing rate. The coefficient of variation CV is somewhat less than 1. Moderate levels of synchrony are induced by converging VPM inputs and by inhibitory interaction among neurons. The strengths of excitatory and inhibitory currents during whisking are about three times larger than threshold. We identify values of numbers of presynaptic neurons, synaptic delays between inhibitory neurons, and electrical coupling within the experimentally plausible ranges for which spike synchrony levels are low. Heterogeneity in in-degrees increases the width of the firing rate distribution to the experimentally observed value. We conclude that an L4 circuit in the low-synchrony regime exhibits qualitative dynamical properties similar to those of balanced networks.
在小鼠触须体感皮层的第 4 层(L4)的一个桶状结构中,神经元主要由 VPM 核中的神经元和同一桶状结构内的其他神经元支配。在安静的觉醒或在空中刷动时,丘脑输入随时间缓慢变化,兴奋性神经元很少发射。L4 中的一个桶状结构包含适量的神经元;突触电导不是很强,连接也不稀疏。L4 回路的动力学特性是否与观察到的大而强耦合稀疏皮质回路中由波动主导的平衡网络所预期的相似?为了解决这个问题,我们分析了一个由 150 个受 VPM 丘脑支配的表达 Parvalbumin 的快速放电抑制性中间神经元组成的网络,其连接是随机的,有无 1600 个低放电兴奋性神经元。在阈值以上,抑制性皮质神经元的群体平均发放率随丘脑发放率线性增加。变异性系数 CV 略小于 1。会聚的 VPM 输入和神经元之间的抑制性相互作用诱导适度的同步性。在刷动期间,兴奋性和抑制性电流的强度大约是阈值的三倍。我们确定了在实验上合理的范围内,突触前神经元数量、抑制性神经元之间的突触延迟以及电耦合的强度,在这些范围内,尖峰同步水平较低。输入度的异质性使发放率分布的宽度增加到实验观察到的值。我们得出结论,低同步性 L4 回路表现出与平衡网络相似的定性动力学特性。