Suppr超能文献

GW182对人AGO蛋白的多价招募

Multivalent Recruitment of Human Argonaute by GW182.

作者信息

Elkayam Elad, Faehnle Christopher R, Morales Marjorie, Sun Jingchuan, Li Huilin, Joshua-Tor Leemor

机构信息

Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.

Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Undergraduate Research Program, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.

出版信息

Mol Cell. 2017 Aug 17;67(4):646-658.e3. doi: 10.1016/j.molcel.2017.07.007. Epub 2017 Aug 3.

Abstract

In miRNA-mediated gene silencing, the physical interaction between human Argonaute (hAgo) and GW182 (hGW182) is essential for facilitating the downstream silencing of the targeted mRNA. GW182 can interact with hAgo via three of the GW/WG repeats in its Argonaute-binding domain: motif-1, motif-2, and the hook motif. The structure of hAgo1 in complex with the hook motif of hGW182 reveals a "gate"-like interaction that is critical for GW182 docking into one of hAgo1's tryptophan-binding pockets. We show that hAgo1 and hAgo2 have a single GW182-binding site and that miRNA binding increases hAgo's affinity to GW182. With target binding occurring rapidly, this ensures that only mature RISC would be recruited for silencing. Finally, we show that hGW182 can recruit up to three copies of hAgo via its three GW motifs. This may explain the observed cooperativity in miRNA-mediated gene silencing.

摘要

在微小RNA(miRNA)介导的基因沉默过程中,人类AGO蛋白(hAgo)与GW182蛋白(hGW182)之间的物理相互作用对于促进靶标信使核糖核酸(mRNA)的下游沉默至关重要。GW182可通过其AGO蛋白结合结构域中的三个GW/WG重复序列与hAgo相互作用:基序-1、基序-2和钩状基序。hAgo1与hGW182钩状基序的复合物结构揭示了一种“门”样相互作用,这对于GW182对接进入hAgo1的一个色氨酸结合口袋至关重要。我们发现hAgo1和hAgo2具有单一的GW182结合位点,并且miRNA结合会增加hAgo对GW182的亲和力。由于靶标结合迅速发生,这确保了只有成熟的RNA诱导沉默复合体(RISC)会被招募用于沉默。最后,我们发现hGW182可通过其三个GW基序招募多达三个拷贝的hAgo。这可能解释了在miRNA介导的基因沉默中观察到的协同作用。

相似文献

1
Multivalent Recruitment of Human Argonaute by GW182.
Mol Cell. 2017 Aug 17;67(4):646-658.e3. doi: 10.1016/j.molcel.2017.07.007. Epub 2017 Aug 3.
2
Function of GW182 and GW bodies in siRNA and miRNA pathways.
Adv Exp Med Biol. 2013;768:71-96. doi: 10.1007/978-1-4614-5107-5_6.
3
N-terminal Ago-binding domain of GW182 contains a tryptophan-rich region that confer binding to the CCR4-NOT complex.
Genes Cells. 2022 Sep;27(9):579-585. doi: 10.1111/gtc.12974. Epub 2022 Jul 24.
4
The role of GW182 proteins in miRNA-mediated gene silencing.
Adv Exp Med Biol. 2013;768:147-63. doi: 10.1007/978-1-4614-5107-5_9.
6
RIP-Chip analysis supports different roles for AGO2 and GW182 proteins in recruiting and processing microRNA targets.
BMC Bioinformatics. 2019 Apr 18;20(Suppl 4):120. doi: 10.1186/s12859-019-2683-y.
7
A C-terminal silencing domain in GW182 is essential for miRNA function.
RNA. 2009 Jun;15(6):1067-77. doi: 10.1261/rna.1605509. Epub 2009 Apr 21.
8
The GW/WG repeats of Drosophila GW182 function as effector motifs for miRNA-mediated repression.
Nucleic Acids Res. 2010 Oct;38(19):6673-83. doi: 10.1093/nar/gkq501. Epub 2010 Jun 8.
9
Structural features of Argonaute-GW182 protein interactions.
Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):E3770-9. doi: 10.1073/pnas.1308510110. Epub 2013 Sep 16.
10
Defining a new role of GW182 in maintaining miRNA stability.
EMBO Rep. 2012 Dec;13(12):1102-8. doi: 10.1038/embor.2012.160. Epub 2012 Oct 23.

引用本文的文献

2
Partners in Silencing: Decoding the Mammalian Argonaute Interactome.
Noncoding RNA. 2025 Aug 19;11(4):62. doi: 10.3390/ncrna11040062.
5
It is Time to Revisit miRNA Therapeutics.
Nucleic Acid Ther. 2025 Feb;35(1):1-5. doi: 10.1089/nat.2024.0069. Epub 2024 Nov 21.
6
miRNA-mediated gene silencing in Drosophila larval development involves GW182-dependent and independent mechanisms.
EMBO J. 2024 Dec;43(23):6161-6179. doi: 10.1038/s44318-024-00249-4. Epub 2024 Sep 25.
7
FMRP cooperates with miRISC components to repress translation and regulate neurite morphogenesis in .
RNA Biol. 2024 Jan;21(1):11-22. doi: 10.1080/15476286.2024.2392304. Epub 2024 Aug 27.
8
Tryptophan As a New Member of RNA-Induced Silencing Complexes Prevents Colon Cancer Liver Metastasis.
Adv Sci (Weinh). 2024 Aug;11(31):e2307937. doi: 10.1002/advs.202307937. Epub 2024 Jun 20.
9
Characterization of Argonaute-containing protein complexes in Leishmania-infected human macrophages.
PLoS One. 2024 May 23;19(5):e0303686. doi: 10.1371/journal.pone.0303686. eCollection 2024.
10
miRNA circuit modules for precise, tunable control of gene expression.
bioRxiv. 2024 Mar 12:2024.03.12.583048. doi: 10.1101/2024.03.12.583048.

本文引用的文献

2
Impact of MicroRNA Levels, Target-Site Complementarity, and Cooperativity on Competing Endogenous RNA-Regulated Gene Expression.
Mol Cell. 2016 Nov 3;64(3):565-579. doi: 10.1016/j.molcel.2016.09.027. Epub 2016 Oct 27.
3
Single-Particle Refinement and Variability Analysis in EMAN2.1.
Methods Enzymol. 2016;579:159-89. doi: 10.1016/bs.mie.2016.05.001. Epub 2016 Jul 1.
4
Structural Analysis of Human Argonaute-2 Bound to a Modified siRNA Guide.
J Am Chem Soc. 2016 Jul 20;138(28):8694-7. doi: 10.1021/jacs.6b04454. Epub 2016 Jul 12.
5
miRISC and the CCR4-NOT complex silence mRNA targets independently of 43S ribosomal scanning.
EMBO J. 2016 Jun 1;35(11):1186-203. doi: 10.15252/embj.201592901. Epub 2016 Mar 23.
6
Biochemical isolation of Argonaute protein complexes by Ago-APP.
Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11841-5. doi: 10.1073/pnas.1506116112. Epub 2015 Sep 8.
7
Towards a molecular understanding of microRNA-mediated gene silencing.
Nat Rev Genet. 2015 Jul;16(7):421-33. doi: 10.1038/nrg3965. Epub 2015 Jun 16.
8
Structural basis for microRNA targeting.
Science. 2014 Oct 31;346(6209):608-13. doi: 10.1126/science.1258040.
9
Structural features of Argonaute-GW182 protein interactions.
Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):E3770-9. doi: 10.1073/pnas.1308510110. Epub 2013 Sep 16.
10
Eukaryote-specific insertion elements control human ARGONAUTE slicer activity.
Cell Rep. 2013 Jun 27;3(6):1893-900. doi: 10.1016/j.celrep.2013.06.010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验