Suppr超能文献

CRISPR-Cpf1对典型和非典型PAM识别的结构基础

Structural Basis for the Canonical and Non-canonical PAM Recognition by CRISPR-Cpf1.

作者信息

Yamano Takashi, Zetsche Bernd, Ishitani Ryuichiro, Zhang Feng, Nishimasu Hiroshi, Nureki Osamu

机构信息

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.

Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Mol Cell. 2017 Aug 17;67(4):633-645.e3. doi: 10.1016/j.molcel.2017.06.035. Epub 2017 Aug 3.

Abstract

The RNA-guided Cpf1 (also known as Cas12a) nuclease associates with a CRISPR RNA (crRNA) and cleaves the double-stranded DNA target complementary to the crRNA guide. The two Cpf1 orthologs from Acidaminococcus sp. (AsCpf1) and Lachnospiraceae bacterium (LbCpf1) have been harnessed for eukaryotic genome editing. Cpf1 requires a specific nucleotide sequence, called a protospacer adjacent motif (PAM), for target recognition. Besides the canonical TTTV PAM, Cpf1 recognizes suboptimal C-containing PAMs. Here, we report four crystal structures of LbCpf1 in complex with the crRNA and its target DNA containing either TTTA, TCTA, TCCA, or CCCA as the PAM. These structures revealed that, depending on the PAM sequences, LbCpf1 undergoes conformational changes to form altered interactions with the PAM-containing DNA duplexes, thereby achieving the relaxed PAM recognition. Collectively, the present structures advance our mechanistic understanding of the PAM-dependent, crRNA-guided DNA cleavage by the Cpf1 family nucleases.

摘要

RNA引导的Cpf1(也称为Cas12a)核酸酶与CRISPR RNA(crRNA)结合,并切割与crRNA引导序列互补的双链DNA靶标。来自酸氨基球菌属(AsCpf1)和毛螺菌科细菌(LbCpf1)的两种Cpf1直系同源物已被用于真核基因组编辑。Cpf1需要一个特定的核苷酸序列,称为原间隔相邻基序(PAM),用于靶标识别。除了典型的TTTV PAM外,Cpf1还识别次优的含C的PAM。在这里,我们报告了LbCpf1与crRNA及其靶DNA形成复合物的四个晶体结构,其中靶DNA含有TTTA、TCTA、TCCA或CCCA作为PAM。这些结构表明,根据PAM序列,LbCpf1会发生构象变化,与含PAM的DNA双链体形成改变的相互作用,从而实现宽松的PAM识别。总体而言,目前的结构推进了我们对Cpf1家族核酸酶依赖PAM、crRNA引导的DNA切割机制的理解。

相似文献

1
Structural Basis for the Canonical and Non-canonical PAM Recognition by CRISPR-Cpf1.
Mol Cell. 2017 Aug 17;67(4):633-645.e3. doi: 10.1016/j.molcel.2017.06.035. Epub 2017 Aug 3.
2
Structural Basis for the Altered PAM Recognition by Engineered CRISPR-Cpf1.
Mol Cell. 2017 Jul 6;67(1):139-147.e2. doi: 10.1016/j.molcel.2017.04.019. Epub 2017 Jun 6.
3
Structural Variation of Type I-F CRISPR RNA Guided DNA Surveillance.
Mol Cell. 2017 Aug 17;67(4):622-632.e4. doi: 10.1016/j.molcel.2017.06.036. Epub 2017 Aug 3.
4
Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a).
Proc Natl Acad Sci U S A. 2018 May 22;115(21):5444-5449. doi: 10.1073/pnas.1718686115. Epub 2018 May 7.
5
Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a.
Mol Cell. 2017 Apr 20;66(2):221-233.e4. doi: 10.1016/j.molcel.2017.03.016.
6
The Acidaminococcus sp. Cas12a nuclease recognizes GTTV and GCTV as non-canonical PAMs.
FEMS Microbiol Lett. 2019 Apr 1;366(8). doi: 10.1093/femsle/fnz085.
7
Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9.
Mol Cell. 2017 Jul 6;67(1):117-127.e5. doi: 10.1016/j.molcel.2017.05.024. Epub 2017 Jun 9.
8
The crystal structure of Cpf1 in complex with CRISPR RNA.
Nature. 2016 Apr 28;532(7600):522-6. doi: 10.1038/nature17944. Epub 2016 Apr 20.
9
C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism.
Mol Cell. 2017 Jan 19;65(2):310-322. doi: 10.1016/j.molcel.2016.11.040. Epub 2016 Dec 15.
10
The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA.
Nature. 2016 Apr 28;532(7600):517-21. doi: 10.1038/nature17945. Epub 2016 Apr 20.

引用本文的文献

1
Directed evolution expands CRISPR-Cas12a genome-editing capacity.
Nucleic Acids Res. 2025 Jul 8;53(13). doi: 10.1093/nar/gkaf649.
2
Kinetic analysis and engineering of thermostable Cas12a for nucleic acid detection.
Nucleic Acids Res. 2025 Jun 6;53(11). doi: 10.1093/nar/gkaf509.
3
High-Fidelity CRISPR-Cas12a-Based Apolipoprotein L1 Genotyping.
Kidney360. 2025 May 28;6(7):1207-1217. doi: 10.34067/KID.0000000871.
4
Concanavalin-A-assisted extraction-free one-pot RPA-CRISPR/Cas12a assay for rapid detection of HPV16.
Mikrochim Acta. 2025 May 14;192(6):354. doi: 10.1007/s00604-025-07198-7.
5
Facilitating crRNA Design by Integrating DNA Interaction Features of CRISPR-Cas12a System.
Adv Sci (Weinh). 2025 Jul;12(25):e2501269. doi: 10.1002/advs.202501269. Epub 2025 May 8.
6
CRISPR-Cas12a REC2 - NUC interactions drive target-strand cleavage and constrain trans cleavage.
bioRxiv. 2025 Mar 25:2025.03.23.644851. doi: 10.1101/2025.03.23.644851.
8
Structure-Guided design of Cas12a variants improves detection of nucleic acids.
Cell Insight. 2025 Jan 20;4(2):100228. doi: 10.1016/j.cellin.2025.100228. eCollection 2025 Apr.
9
10
Tunable control of Cas12 activity promotes universal and fast one-pot nucleic acid detection.
Nat Commun. 2025 Jan 30;16(1):1166. doi: 10.1038/s41467-025-56516-3.

本文引用的文献

1
Structural Basis for the Altered PAM Recognition by Engineered CRISPR-Cpf1.
Mol Cell. 2017 Jul 6;67(1):139-147.e2. doi: 10.1016/j.molcel.2017.04.019. Epub 2017 Jun 6.
2
Engineered Cpf1 variants with altered PAM specificities.
Nat Biotechnol. 2017 Aug;35(8):789-792. doi: 10.1038/nbt.3900. Epub 2017 Jun 5.
3
Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a.
Mol Cell. 2017 Apr 20;66(2):221-233.e4. doi: 10.1016/j.molcel.2017.03.016.
5
A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants.
Nat Plants. 2017 Feb 17;3:17018. doi: 10.1038/nplants.2017.18.
6
Diversity and evolution of class 2 CRISPR-Cas systems.
Nat Rev Microbiol. 2017 Mar;15(3):169-182. doi: 10.1038/nrmicro.2016.184. Epub 2017 Jan 23.
7
In vivo high-throughput profiling of CRISPR-Cpf1 activity.
Nat Methods. 2017 Feb;14(2):153-159. doi: 10.1038/nmeth.4104. Epub 2016 Dec 19.
8
C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism.
Mol Cell. 2017 Jan 19;65(2):310-322. doi: 10.1016/j.molcel.2016.11.040. Epub 2016 Dec 15.
9
PAM-Dependent Target DNA Recognition and Cleavage by C2c1 CRISPR-Cas Endonuclease.
Cell. 2016 Dec 15;167(7):1814-1828.e12. doi: 10.1016/j.cell.2016.11.053.
10
Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array.
Nat Biotechnol. 2017 Jan;35(1):31-34. doi: 10.1038/nbt.3737. Epub 2016 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验