Suppr超能文献

来自克隆性T细胞前体的调节性T细胞和上皮内T细胞的组织特异性出现。

Tissue-specific emergence of regulatory and intraepithelial T cells from a clonal T cell precursor.

作者信息

Bilate Angelina M, Bousbaine Djenet, Mesin Luka, Agudelo Marianna, Leube Justin, Kratzert Andreas, Dougan Stephanie K, Victora Gabriel D, Ploegh Hidde L

机构信息

Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA 02142, USA.

Department of Biology, Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.

出版信息

Sci Immunol. 2016 Aug 26;1(2):eaaf7471. doi: 10.1126/sciimmunol.aaf7471.

Abstract

Peripheral Foxp3 regulatory T cells (pT) maintain immune homeostasis by controlling potentially harmful effector T cell responses toward dietary and microbial antigens. Although the identity of the T cell receptor (TCR) can impose commitment and functional specialization of T cells, less is known about how TCR identity governs pT development from conventional CD4 T cells. To investigate the extent to which TCR identity dictates pT fate, we used somatic cell nuclear transfer to generate a transnuclear (TN) mouse carrying a monoclonal TCR from a pT (pT TN mice). We found that the pT TCR did not inevitably predispose T cells to become pT but instead allowed for differentiation of noninflammatory CD4CD8αα intraepithelial lymphocytes (CD4) in the small intestine. Only when we limited the number of T cell precursors that carried the TN pT TCR did we observe substantial pT development in the mesenteric lymph nodes and small intestine lamina propria of mixed bone marrow chimeras. Small clonal sizes and therefore decreased intraclonal competition were required for pT development. Despite bearing the same TCR, small intestine CD4 developed independently of precursor frequency. Both pT and CD4 development strictly depended on the resident microbiota. A single clonal CD4 T cell precursor can thus give rise to two functionally distinct and anatomically segregated T cell subsets in a microbiota-dependent manner. Therefore, plasticity of the CD4 T cell compartment depends not only on the microbiota but also on specialized environmental cues provided by different tissues.

摘要

外周Foxp3调节性T细胞(pT)通过控制针对饮食和微生物抗原的潜在有害效应T细胞反应来维持免疫稳态。尽管T细胞受体(TCR)的特性可以决定T细胞的定向分化和功能特化,但关于TCR特性如何调控常规CD4 T细胞向pT细胞的发育,人们了解较少。为了研究TCR特性在多大程度上决定pT细胞命运,我们利用体细胞核移植技术生成了一只携带来自pT细胞的单克隆TCR的转基因(TN)小鼠(pT TN小鼠)。我们发现,pT细胞的TCR并不会必然促使T细胞成为pT细胞,反而会使小肠中的非炎症性CD4CD8αα上皮内淋巴细胞(CD4)发生分化。只有当我们限制携带TN pT TCR的T细胞前体数量时,才在混合骨髓嵌合体的肠系膜淋巴结和小肠固有层中观察到大量pT细胞的发育。pT细胞的发育需要小的克隆规模,从而降低克隆内竞争。尽管小肠CD4细胞携带相同的TCR,但其发育独立于前体频率。pT细胞和CD4细胞的发育都严格依赖于肠道固有微生物群。因此,单个克隆性CD4 T细胞前体能够以微生物群依赖的方式产生两个功能不同且在解剖学上分离的T细胞亚群。所以,CD4 T细胞区室的可塑性不仅取决于微生物群,还取决于不同组织提供的特殊环境信号。

相似文献

1
Tissue-specific emergence of regulatory and intraepithelial T cells from a clonal T cell precursor.
Sci Immunol. 2016 Aug 26;1(2):eaaf7471. doi: 10.1126/sciimmunol.aaf7471.
2
Contribution of Mesenteric Lymph Nodes and GALT to the Intestinal Foxp3+ Regulatory T-Cell Compartment.
Cell Mol Gastroenterol Hepatol. 2016 May;2(3):274-280. doi: 10.1016/j.jcmgh.2015.12.009.
3
The microbiota is dispensable for the early stages of peripheral regulatory T cell induction within mesenteric lymph nodes.
Cell Mol Immunol. 2021 May;18(5):1211-1221. doi: 10.1038/s41423-021-00647-2. Epub 2021 Mar 24.
6
Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine.
Science. 2016 Feb 19;351(6275):858-63. doi: 10.1126/science.aac5560. Epub 2016 Jan 28.
7
Rapid and Efficient Generation of Regulatory T Cells to Commensal Antigens in the Periphery.
Cell Rep. 2016 Sep 27;17(1):206-220. doi: 10.1016/j.celrep.2016.08.092.
8
GPR18 is required for a normal CD8αα intestinal intraepithelial lymphocyte compartment.
J Exp Med. 2014 Nov 17;211(12):2351-9. doi: 10.1084/jem.20140646. Epub 2014 Oct 27.
9
Nuclear transfer nTreg model reveals fate-determining TCR-β and novel peripheral nTreg precursors.
Proc Natl Acad Sci U S A. 2016 Apr 19;113(16):E2316-25. doi: 10.1073/pnas.1523664113. Epub 2016 Apr 4.
10
Tissue adaptation of regulatory and intraepithelial CD4⁺ T cells controls gut inflammation.
Science. 2016 Jun 24;352(6293):1581-6. doi: 10.1126/science.aaf3892. Epub 2016 Jun 2.

引用本文的文献

1
Machine learning-assisted decoding of temporal transcriptional dynamics via fluorescent timer.
Nat Commun. 2025 Jul 1;16(1):5720. doi: 10.1038/s41467-025-61279-y.
2
Identification of antigen-presenting cell-T cell interactions driving immune responses to food.
Science. 2025 Mar 14;387(6739):eado5088. doi: 10.1126/science.ado5088.
3
Spectrum of Treg and self-reactive T cells: single cell perspectives from old friend HTLV-1.
Discov Immunol. 2024 May 13;3(1):kyae006. doi: 10.1093/discim/kyae006. eCollection 2024.
4
Pathways and mechanisms of CD4CD8αα intraepithelial T cell development.
Trends Immunol. 2024 Apr;45(4):288-302. doi: 10.1016/j.it.2024.02.006. Epub 2024 Mar 20.
5
Universal recording of immune cell interactions in vivo.
Nature. 2024 Mar;627(8003):399-406. doi: 10.1038/s41586-024-07134-4. Epub 2024 Mar 6.
6
Intraepithelial Lymphocytes of the Intestine.
Annu Rev Immunol. 2024 Jun;42(1):289-316. doi: 10.1146/annurev-immunol-090222-100246. Epub 2024 Jun 14.
7
Segmented filamentous bacteria-induced epithelial MHCII regulates cognate CD4+ IELs and epithelial turnover.
J Exp Med. 2024 Jan 1;221(1). doi: 10.1084/jem.20230194. Epub 2023 Oct 30.
8
Gut microbial fatty acid isomerization modulates intraepithelial T cells.
Nature. 2023 Jul;619(7971):837-843. doi: 10.1038/s41586-023-06265-4. Epub 2023 Jun 28.
9
Dietary protein shapes the profile and repertoire of intestinal CD4+ T cells.
J Exp Med. 2023 Aug 7;220(8). doi: 10.1084/jem.20221816. Epub 2023 May 16.
10
Runx3d controls the abundance and functional differentiation of CD4CD8αα intraepithelial T cells.
Cell Death Discov. 2023 Apr 12;9(1):123. doi: 10.1038/s41420-023-01415-z.

本文引用的文献

1
Tissue adaptation of regulatory and intraepithelial CD4⁺ T cells controls gut inflammation.
Science. 2016 Jun 24;352(6293):1581-6. doi: 10.1126/science.aaf3892. Epub 2016 Jun 2.
3
Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine.
Science. 2016 Feb 19;351(6275):858-63. doi: 10.1126/science.aac5560. Epub 2016 Jan 28.
4
Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells.
Cell. 2015 Oct 8;163(2):367-80. doi: 10.1016/j.cell.2015.08.058. Epub 2015 Sep 24.
5
MUCOSAL IMMUNOLOGY. Individual intestinal symbionts induce a distinct population of RORγ⁺ regulatory T cells.
Science. 2015 Aug 28;349(6251):993-7. doi: 10.1126/science.aaa9420. Epub 2015 Aug 13.
6
MUCOSAL IMMUNOLOGY. The microbiota regulates type 2 immunity through RORγt⁺ T cells.
Science. 2015 Aug 28;349(6251):989-93. doi: 10.1126/science.aac4263. Epub 2015 Jul 9.
8
Cellular Plasticity of CD4+ T Cells in the Intestine.
Front Immunol. 2014 Oct 7;5:488. doi: 10.3389/fimmu.2014.00488. eCollection 2014.
9
Elevated T cell receptor signaling identifies a thymic precursor to the TCRαβ(+)CD4(-)CD8β(-) intraepithelial lymphocyte lineage.
Immunity. 2014 Aug 21;41(2):219-29. doi: 10.1016/j.immuni.2014.07.008. Epub 2014 Aug 14.
10
Preparation of Single-Cell RNA-Seq Libraries for Next Generation Sequencing.
Curr Protoc Mol Biol. 2014 Jul 1;107:4.22.1-4.22.17. doi: 10.1002/0471142727.mb0422s107.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验