Suppr超能文献

一种基于改进D-S证据融合的集成深度卷积神经网络模型用于轴承故障诊断

An Ensemble Deep Convolutional Neural Network Model with Improved D-S Evidence Fusion for Bearing Fault Diagnosis.

作者信息

Li Shaobo, Liu Guokai, Tang Xianghong, Lu Jianguang, Hu Jianjun

机构信息

School of Mechanical Engineering, Guizhou University, Guiyang 550025, China.

Key Laboratory of Advanced Manufacturing Technology, Ministry of Education, Guizhou University, Guiyang 550025, China.

出版信息

Sensors (Basel). 2017 Jul 28;17(8):1729. doi: 10.3390/s17081729.

Abstract

Intelligent machine health monitoring and fault diagnosis are becoming increasingly important for modern manufacturing industries. Current fault diagnosis approaches mostly depend on expert-designed features for building prediction models. In this paper, we proposed IDSCNN, a novel bearing fault diagnosis algorithm based on ensemble deep convolutional neural networks and an improved Dempster-Shafer theory based evidence fusion. The convolutional neural networks take the root mean square (RMS) maps from the FFT (Fast Fourier Transformation) features of the vibration signals from two sensors as inputs. The improved D-S evidence theory is implemented via distance matrix from evidences and modified Gini Index. Extensive evaluations of the IDSCNN on the Case Western Reserve Dataset showed that our IDSCNN algorithm can achieve better fault diagnosis performance than existing machine learning methods by fusing complementary or conflicting evidences from different models and sensors and adapting to different load conditions.

摘要

智能机器健康监测与故障诊断对现代制造业日益重要。当前的故障诊断方法大多依赖专家设计的特征来构建预测模型。在本文中,我们提出了IDSCNN,这是一种基于集成深度卷积神经网络和改进的基于Dempster-Shafer理论的证据融合的新型轴承故障诊断算法。卷积神经网络将来自两个传感器的振动信号的快速傅里叶变换(FFT)特征的均方根(RMS)图作为输入。改进的D-S证据理论通过证据的距离矩阵和修正的基尼指数来实现。在西储大学数据集上对IDSCNN进行的广泛评估表明,我们的IDSCNN算法通过融合来自不同模型和传感器的互补或冲突证据并适应不同负载条件,能够实现比现有机器学习方法更好的故障诊断性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10e/5579931/49c917069e42/sensors-17-01729-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验