Müller Matthias, Hönicke Philipp, Detlefs Blanka, Fleischmann Claudia
Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany.
CEA Laboratory of Electronics and Information Technologies (LETI), Minatec Campus, 17 rue des Martyrs, 38054 Grenoble, France.
Materials (Basel). 2014 Apr 17;7(4):3147-3159. doi: 10.3390/ma7043147.
The accurate characterization of nanolayered systems is an essential topic for today's developments in many fields of material research. Thin high-k layers and gate stacks are technologically required for the design of current and future electronic devices and can be deposited, e.g., by Atomic Layer Deposition (ALD). However, the metrological challenges to characterize such systems demand further development of analytical techniques. Reference-free Grazing Incidence X-ray Fluorescence (GIXRF) based on synchrotron radiation can significantly contribute to the characterization of such nanolayered systems. GIXRF takes advantage of the incident angle dependence of XRF, in particular below the substrate's critical angle where changes in the X-ray Standing Wave field (XSW) intensity influence the angular intensity profile. The reliable modeling of the XSW in conjunction with the radiometrically calibrated instrumentation at the PTB allows for reference-free, fundamental parameter-based quantitative analysis. This approach is very well suited for the characterization of nanoscaled materials, especially when no reference samples with sufficient quality are available. The capabilities of this method are demonstrated by means of two systems for transistor gate stacks, ., Al₂O₃ high-k layers grown on Si or Si/SiO₂ and Sc₂O₃ layers on InGaAs/InP substrates.
纳米层状体系的精确表征是当今材料研究众多领域发展的一个重要课题。对于当前和未来电子器件的设计而言,技术上需要薄的高k层和栅极堆叠结构,并且可以例如通过原子层沉积(ALD)来沉积。然而,表征此类体系所面临的计量挑战要求进一步发展分析技术。基于同步辐射的无参考掠入射X射线荧光(GIXRF)能够对这类纳米层状体系的表征做出重大贡献。GIXRF利用了X射线荧光对入射角的依赖性,特别是在低于衬底临界角的情况下,此时X射线驻波场(XSW)强度的变化会影响角强度分布。在德国物理技术研究院(PTB),将XSW的可靠建模与经过辐射校准的仪器相结合,能够实现无参考的、基于基本参数的定量分析。这种方法非常适合表征纳米级材料,特别是在没有足够高质量参考样品的情况下。通过两种用于晶体管栅极堆叠结构的体系,即生长在Si或Si/SiO₂上的Al₂O₃高k层以及生长在InGaAs/InP衬底上的Sc₂O₃层,展示了该方法的能力。