Suppr超能文献

用于提高分类准确率和增加命令数量的混合脑机接口技术:综述

Hybrid Brain-Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review.

作者信息

Hong Keum-Shik, Khan Muhammad Jawad

机构信息

School of Mechanical Engineering, Pusan National University, Busan, South Korea.

Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea.

出版信息

Front Neurorobot. 2017 Jul 24;11:35. doi: 10.3389/fnbot.2017.00035. eCollection 2017.

Abstract

In this article, non-invasive hybrid brain-computer interface (hBCI) technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography (EEG), due to its easy use and fast temporal resolution, is most widely utilized in combination with other brain/non-brain signal acquisition modalities, for instance, functional near infrared spectroscopy (fNIRS), electromyography (EMG), electrooculography (EOG), and eye tracker. Three main purposes of hybridization are to increase the number of control commands, improve classification accuracy and reduce the signal detection time. Currently, such combinations of EEG + fNIRS and EEG + EOG are most commonly employed. Four principal components (i.e., hardware, paradigm, classifiers, and features) relevant to accuracy improvement are discussed. In the case of brain signals, motor imagination/movement tasks are combined with cognitive tasks to increase active brain-computer interface (BCI) accuracy. Active and reactive tasks sometimes are combined: motor imagination with steady-state evoked visual potentials (SSVEP) and motor imagination with P300. In the case of reactive tasks, SSVEP is most widely combined with P300 to increase the number of commands. Passive BCIs, however, are rare. After discussing the hardware and strategies involved in the development of hBCI, the second part examines the approaches used to increase the number of control commands and to enhance classification accuracy. The future prospects and the extension of hBCI in real-time applications for daily life scenarios are provided.

摘要

本文综述了用于提高分类准确率和增加指令数量的非侵入性混合脑机接口(hBCI)技术。结合两种以上模式的混合是脑成像和假肢控制的新趋势。脑电图(EEG)因其使用方便和时间分辨率快,在与其他脑/非脑信号采集模式(如功能近红外光谱(fNIRS)、肌电图(EMG)、眼电图(EOG)和眼动追踪器)结合使用时最为广泛。混合的三个主要目的是增加控制指令的数量、提高分类准确率和减少信号检测时间。目前,EEG + fNIRS和EEG + EOG的组合最为常用。讨论了与提高准确率相关的四个主要组成部分(即硬件、范式、分类器和特征)。对于脑信号,运动想象/运动任务与认知任务相结合,以提高主动脑机接口(BCI)的准确率。主动任务和反应任务有时会结合起来:运动想象与稳态诱发视觉电位(SSVEP)以及运动想象与P300。在反应任务中,SSVEP与P300结合最为广泛,以增加指令数量。然而,被动BCI很少见。在讨论了hBCI开发中涉及的硬件和策略之后,第二部分研究了用于增加控制指令数量和提高分类准确率的方法。还提供了hBCI在日常生活场景实时应用中的未来前景和扩展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b663/5522881/61af1afb3d8a/fnbot-11-00035-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验