Suppr超能文献

基于非介入式感知技术的病理性步态自动分类。

An Automated Classification of Pathological Gait Using Unobtrusive Sensing Technology.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2017 Dec;25(12):2336-2346. doi: 10.1109/TNSRE.2017.2736939. Epub 2017 Aug 7.

Abstract

This paper integrates an unobtrusive and affordable sensing technology with machine learning methods to discriminate between healthy and pathological gait patterns as a result of stroke or acquired brain injury. A feature analysis is used to identify the role of each body part in separating pathological patterns from healthy patterns. Gait features, including the orientations of the hips and spine (trunk), shoulders and neck (upper limb), knees and ankles (lower limb), are calculated during walking based on Kinect skeletal tracking sequences. Sequences of these features during three types of walking conditions were examined: 1) walking at self-pace (WSP); 2) walking at distracted (WD); and 3) walking at fast pace (WFP). Two machine learning approaches, an instance-based discriminative classifier ( -nearest neighbor) and a dynamical generative classifier (using Gaussian Process Latent Variable Model), are examined to distinguish between healthy and pathological gaits. Nested cross validation is implemented to evaluate the performance of the two classifiers using three metrics: F1-score, macro-averaged error, and micro-averaged error. The discriminative model outperforms the generative model in terms of the F1-score (discriminative: WSP > 0.95, WD > 0.96, and WFP > 0.95 and generative: WSP > 0.87, WD > 0.85, and WFP > 0.68) and macro-averaged error (discriminative: WSP < 0.08, WD < 0.1, and WFP < 0.09 and generative: WSP < 0.11, WD < 0.12, and WFP < 0.14). The dynamical generative model on the other hand obtains better micro-averaged error (discriminative: WSP < 0.37, WD < 0.3, and WFP < 0.35 and generative: WSP < 0.15, WD < 0.2, and WFP < 0.2). The high-dimensional gait features are divided into five subsets: lower limb, upper limb, trunk, velocity, and acceleration. An instance-based feature analysis method (ReliefF) is used to assign weights to each subset of features according to its discriminatory power. The feature analysis establishes the most informative features (upper limb, lower limb, and trunk) for identifying pathological gait.

摘要

本文将一种非侵入式且经济实惠的传感技术与机器学习方法相结合,以区分由于中风或后天性脑损伤导致的健康和病理步态。通过特征分析来确定每个身体部位在将病理模式与健康模式区分开方面的作用。在行走过程中,基于 Kinect 骨骼跟踪序列计算包括臀部和脊柱(躯干)、肩部和颈部(上肢)、膝盖和脚踝(下肢)在内的步态特征的方向。检查了三种行走条件下的这些特征序列:1)以自身速度行走(WSP);2)在分散注意力的情况下行走(WD);3)快速行走(WFP)。检查了两种机器学习方法,一种基于实例的判别分类器(最近邻)和一种动态生成分类器(使用高斯过程潜在变量模型),以区分健康和病理步态。使用三个指标(F1 分数、宏平均误差和微平均误差)通过嵌套交叉验证来评估这两种分类器的性能:F1 分数(判别:WSP>0.95、WD>0.96 和 WFP>0.95,生成:WSP>0.87、WD>0.85 和 WFP>0.68)和宏平均误差(判别:WSP<0.08、WD<0.1 和 WFP<0.09,生成:WSP<0.11、WD<0.12 和 WFP<0.14)。另一方面,动态生成模型在微平均误差上获得了更好的结果(判别:WSP<0.37、WD<0.3 和 WFP<0.35,生成:WSP<0.15、WD<0.2 和 WFP<0.2)。另一方面,动态生成模型在微平均误差上获得了更好的结果(判别:WSP<0.37、WD<0.3 和 WFP<0.35,生成:WSP<0.15、WD<0.2 和 WFP<0.2)。高维步态特征被分为五个子集:下肢、上肢、躯干、速度和加速度。使用基于实例的特征分析方法(ReliefF)根据其判别能力为每个特征子集分配权重。特征分析确定了识别病理步态的最有信息的特征(上肢、下肢和躯干)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验