Suppr超能文献

多标记自适应富集试验的推断

Inference for multimarker adaptive enrichment trials.

作者信息

Simon Richard, Simon Noah

机构信息

Biometric Research Program, National Cancer Institute, Rockville, MD 20850, USA.

Department of Biostatistics, University of Washington, Seattle, WA 98195, USA.

出版信息

Stat Med. 2017 Nov 20;36(26):4083-4093. doi: 10.1002/sim.7422. Epub 2017 Aug 10.

Abstract

Identification of treatment selection biomarkers has become very important in cancer drug development. Adaptive enrichment designs have been developed for situations where a unique treatment selection biomarker is not apparent based on the mechanism of action of the drug. With such designs, the eligibility rules may be adaptively modified at interim analysis times to exclude patients who are unlikely to benefit from the test treatment.We consider a recently proposed, particularly flexible approach that permits development of model-based multifeature predictive classifiers as well as optimized cut-points for continuous biomarkers. A single significance test, including all randomized patients, is performed at the end of the trial of the strong null hypothesis that the expected outcome on the test treatment is no better than control for any of the subset populations of patients accrued in the K stages of the clinical trial. In this paper, we address 2 issues involving inference following an adaptive enrichment design as described above. The first is specification of the intended use population and estimation of treatment effect for that population following rejection of the strong null hypothesis. The second issue is defining conditions in which rejection of the strong null hypothesis implies rejection of the null hypothesis for the intended use population.

摘要

在癌症药物研发中,确定治疗选择生物标志物已变得极为重要。对于基于药物作用机制无法明确唯一治疗选择生物标志物的情况,已开发出适应性富集设计。采用此类设计时,入选规则可在期中分析阶段进行适应性修改,以排除不太可能从试验性治疗中获益的患者。我们考虑一种最近提出的、特别灵活的方法,该方法允许开发基于模型的多特征预测分类器以及针对连续生物标志物的优化切点。在临床试验的K个阶段积累的任何患者亚组群体中,针对试验性治疗的预期结果不比对照更好这一强零假设,在试验结束时对所有随机分组患者进行单一显著性检验。在本文中,我们探讨了上述适应性富集设计之后涉及推断的两个问题。第一个问题是在强零假设被拒绝后,确定目标使用人群并估计该人群的治疗效果。第二个问题是定义在何种条件下,强零假设的拒绝意味着目标使用人群的零假设被拒绝。

相似文献

1
Inference for multimarker adaptive enrichment trials.
Stat Med. 2017 Nov 20;36(26):4083-4093. doi: 10.1002/sim.7422. Epub 2017 Aug 10.
2
Biomarker threshold adaptive designs for survival endpoints.
J Biopharm Stat. 2018;28(6):1038-1054. doi: 10.1080/10543406.2018.1434191. Epub 2018 Feb 13.
3
Adaptive Designs with Discrete Test Statistics and Consideration of Overrunning.
Methods Inf Med. 2015;54(5):434-46. doi: 10.3414/ME14-02-0023. Epub 2015 Oct 2.
5
Adaptive enrichment designs for clinical trials.
Biostatistics. 2013 Sep;14(4):613-25. doi: 10.1093/biostatistics/kxt010. Epub 2013 Mar 21.
6
A Biomarker Signature-Guided Clinical Trial Design for Precision Medicine.
Stat Med. 2025 May;44(10-12):e70103. doi: 10.1002/sim.70103.
7
Phase 3 DREAM-HF Trial of Mesenchymal Precursor Cells in Chronic Heart Failure.
Circ Res. 2019 Jul 19;125(3):265-281. doi: 10.1161/CIRCRESAHA.119.314951. Epub 2019 Jul 18.
8
Adaptive clinical trial designs for simultaneous testing of matched diagnostics and therapeutics.
Clin Cancer Res. 2011 Nov 1;17(21):6634-40. doi: 10.1158/1078-0432.CCR-11-1105.
9
Biomarker enrichment considerations in oncology early development single-arm studies.
J Biopharm Stat. 2018;28(2):282-291. doi: 10.1080/10543406.2017.1379533. Epub 2017 Oct 30.

引用本文的文献

1
Toward Precision in Critical Care Research: Methods for Observational and Interventional Studies.
Crit Care Med. 2024 Sep 1;52(9):1439-1450. doi: 10.1097/CCM.0000000000006371. Epub 2024 Aug 15.
2
Multi-stage adaptive enrichment trial design with subgroup estimation.
J Biopharm Stat. 2020 Nov 1;30(6):1038-1049. doi: 10.1080/10543406.2020.1832109. Epub 2020 Oct 18.
5
Auxiliary variable-enriched biomarker-stratified design.
Stat Med. 2018 Dec 30;37(30):4610-4635. doi: 10.1002/sim.7938. Epub 2018 Sep 16.

本文引用的文献

1
Using Bayesian modeling in frequentist adaptive enrichment designs.
Biostatistics. 2018 Jan 1;19(1):27-41. doi: 10.1093/biostatistics/kxw054.
2
A two-stage patient enrichment adaptive design in phase II oncology trials.
Contemp Clin Trials. 2014 Jan;37(1):148-54. doi: 10.1016/j.cct.2013.12.001. Epub 2013 Dec 14.
3
Adaptive enrichment designs for clinical trials.
Biostatistics. 2013 Sep;14(4):613-25. doi: 10.1093/biostatistics/kxt010. Epub 2013 Mar 21.
4
Group sequential enrichment design incorporating subgroup selection.
Stat Med. 2013 Jul 20;32(16):2695-714. doi: 10.1002/sim.5738. Epub 2013 Jan 13.
5
6
Comprehensive molecular characterization of human colon and rectal cancer.
Nature. 2012 Jul 18;487(7407):330-7. doi: 10.1038/nature11252.
7
The BATTLE trial: personalizing therapy for lung cancer.
Cancer Discov. 2011 Jun;1(1):44-53. doi: 10.1158/2159-8274.CD-10-0010. Epub 2011 Jun 1.
8
Improved survival with vemurafenib in melanoma with BRAF V600E mutation.
N Engl J Med. 2011 Jun 30;364(26):2507-16. doi: 10.1056/NEJMoa1103782. Epub 2011 Jun 5.
9
Population enrichment designs: case study of a large multinational trial.
J Biopharm Stat. 2011 Jul;21(4):831-45. doi: 10.1080/10543406.2011.554129.
10
Taming the dragon: genomic biomarkers to individualize the treatment of cancer.
Nat Med. 2011 Mar;17(3):304-12. doi: 10.1038/nm.2311.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验